Publications by authors named "Emmanuelle Charrier"

Collapsin response mediator proteins (CRMPs) consist of five homologous cytosolic proteins that participate in signal transduction involved in a variety of physiological events. CRMP1 is highly expressed during brain development; however, its functions remains unclear. To gain insight into its function, we generated CRMP1(-/-) mice with a knock-in LacZ gene.

View Article and Find Full Text PDF

Collapsin-response mediator proteins (CRMPs) are highly expressed in the developing brain where they take part in several aspects of neuronal differentiation. CRMPs are still present postnatally, but their function remains speculative in the adult brain. We studied the expression and localization of CRMP1, CRMP2 and CRMP5 in two areas of the nervous system with persistent neurogenesis in adult mice, the olfactory mucosa and the olfactory bulb.

View Article and Find Full Text PDF

CRMP1, CRMP2, and CRMP5 have been identified as cytosolic proteins relaying semaphorin 3A signalling, one of the molecular cues conducting axon and dendrite growth and guidance. They are highly expressed during brain ontogenesis, but, because of their lower levels in the adult, their distribution in the mature brain is poorly documented. By using specific antibodies, we investigated the cellular distribution of these CRMPs in different adult brain structures and in neural cell cultures with a special focus on the splice variants CRMP2A and CRMP2B.

View Article and Find Full Text PDF

The members of the collapsin response mediator protein (CRMP) family-five cytosolic phosphoproteins -are highly expressed throughout brain development. The first member to be cloned, CRMP2, was identified as an intracellular messenger required for the growth cone-collapse induced by semaphorin 3A (Sema3A). A rapidly expanding body of study indicates that the functions of CRMPs are not solely limited to the signaling transduction of the Sema3A guidance cue.

View Article and Find Full Text PDF