Publications by authors named "Emmanuelle Bouzigon"

Background: Viral infections in childhood, especially to rhinovirus (RV) and respiratory syncytial virus (RSV), are associated with asthma inception and exacerbation. However, little is known about the role of RV- and RSV-specific antibodies in childhood versus adult asthma.

Objective: We sought to investigate associations between RV- and RSV-specific IgG levels and asthma phenotypes in children and adults.

View Article and Find Full Text PDF

Since the first genome-wide association studies (GWASs), thousands of variant-trait associations have been discovered. However, comprehensively mapping the genetic determinant of complex traits through univariate testing can require prohibitive sample sizes. Multi-trait GWAS can circumvent this issue and improve statistical power by leveraging the joint genetic architecture of human phenotypes.

View Article and Find Full Text PDF

Introduction: Exposure to respiratory viruses is a significant cause of morbidity and affects virus-specific antibody levels. Little is known about determinants associated with immune response to these viruses. We aimed to investigate the determinants of respiratory syncytial virus (RSV)- and rhinovirus (RV)- specific IgG responses in both children and adults.

View Article and Find Full Text PDF

Motivation: Genome-wide association studies (GWAS) have enabled large-scale analysis of the role of genetic variants in human disease. Despite impressive methodological advances, subsequent clinical interpretation and application remains challenging when GWAS suffer from a lack of statistical power. In recent years, however, the use of information diffusion algorithms with molecular networks has led to fruitful insights on disease genes.

View Article and Find Full Text PDF

Since the first Genome-Wide Association Studies (GWAS), thousands of variant-trait associations have been discovered. However, the sample size required to detect additional variants using standard univariate association screening is increasingly prohibitive. Multi-trait GWAS offers a relevant alternative: it can improve statistical power and lead to new insights about gene function and the joint genetic architecture of human phenotypes.

View Article and Find Full Text PDF

Purpose: Numerous genes have been associated with allergic diseases (asthma, allergic rhinitis, and eczema), but they explain only part of their heritability. This is partly because most previous studies ignored complex mechanisms such as gene-environment (G-E) interactions and complex phenotypes such as co-morbidity. However, it was recently evidenced that the co-morbidity of asthma-plus-eczema appears as a sub-entity depending on specific genetic factors.

View Article and Find Full Text PDF

Background: Eosinophils play a key role in the asthma allergic response by releasing cytotoxic molecules such as eosinophil cationic protein (ECP) and eosinophil-derived neurotoxin (EDN) that generate epithelium damages.

Objective: We sought to identify genetic variants influencing ECP and EDN levels in asthma-ascertained families.

Methods: We performed univariate and bivariate genome-wide association analyses of ECP and EDN levels in 1018 subjects from the EGEA study with follow-up in 153 subjects from the Saguenay-Lac-Saint-Jean study and combined the results of these 2 studies through meta-analysis.

View Article and Find Full Text PDF

Oxidative stress (OS) is the main pathophysiological mechanism involved in several chronic diseases, including asthma. Fluorescent oxidation products (FlOPs), a global biomarker of damage due to OS, is of growing interest in epidemiological studies. We conducted a genome-wide association study (GWAS) of the FlOPs level in 1216 adults from the case-control and family-based EGEA study (mean age 43 years old, 51% women, and 23% current smokers) to identify genetic variants associated with FlOPs.

View Article and Find Full Text PDF

Background: Asthma, lung cancer (LC) and chronic obstructive pulmonary disease (COPD) are three respiratory diseases characterized by complex mechanisms underlying and genetic predispositions, with asthma having the highest calculated heritability. Despite efforts deployed in the last decades, only a small part of its heritability has been elucidated. It was hypothesized that shared genetic factors by these three diseases could help identify new asthma loci.

View Article and Find Full Text PDF

THE CASE FOR EPIGENETIC ALTERATIONS The mechanisms of the long-term impacts of exposure to chemical substances remain poorly understood. While genotoxic and mutagenic effects have been well characterized, epigenetic mechanisms such as DNA methylation could also account for the delayed effects of exposures. It is in the case of tobacco that the strongest arguments for a role of these mechanisms have been obtained in human populations.

View Article and Find Full Text PDF

Background: Numerous genes have been associated with the three most common allergic diseases (asthma, allergic rhinitis or eczema) but these genes explain only a part of the heritability. In the vast majority of genetic studies, complex phenotypes such as co-morbidity of two of these diseases, have not been considered. This may partly explain missing heritability.

View Article and Find Full Text PDF

Background: Allergy, the most frequent immune disorder affecting 30% of the world's population, is the consequence of immunoglobin E (IgE) sensitization to allergens. Among the genetic factors suspected to be involved in allergy, the HLA class-II genomic region is a strong candidate.

Objective: To assess the association between HLA class-II alleles and specific IgE (sIgE) sensitization to a large number of respiratory allergen molecules.

View Article and Find Full Text PDF

Purpose: To assess the keratoconus (KC) prevalence among first-degree relatives of affected subjects.

Methods: We performed large epidemiological, prospective, and observational cohort, which took place in the French KC National Reference Centre, in Bordeaux. We studied data from 94 unrelated patients with KC and at least 2 first-degree relatives assessable.

View Article and Find Full Text PDF

Background: Asthma, a heterogeneous disease with variable age of onset, results from the interplay between genetic and environmental factors. Early-life tobacco smoke (ELTS) exposure is a major asthma risk factor. Only a few genetic loci have been reported to interact with ELTS exposure in asthma.

View Article and Find Full Text PDF

Background: A positional cloning study of bronchial hyper-responsiveness (BHR) at the 17p11 locus in the French Epidemiological study on the Genetics and Environment of Asthma (EGEA) families showed significant interaction between early-life environmental tobacco smoke (ETS) exposure and genetic variants located in . This gene encodes the heavy chain subunit of axonemal dynein, which is involved with ATP in the motile cilia function.Our goal was to identify genetic variants at other genes interacting with ETS in BHR by investigating all genes belonging to the '' and '' pathways which include are targets of cigarette smoke and play a crucial role in the airway inflammation.

View Article and Find Full Text PDF

We examined common variation in asthma risk by conducting a meta-analysis of worldwide asthma genome-wide association studies (23,948 asthma cases, 118,538 controls) of individuals from ethnically diverse populations. We identified five new asthma loci, found two new associations at two known asthma loci, established asthma associations at two loci previously implicated in the comorbidity of asthma plus hay fever, and confirmed nine known loci. Investigation of pleiotropy showed large overlaps in genetic variants with autoimmune and inflammatory diseases.

View Article and Find Full Text PDF

Background: Atopy, an endotype underlying allergic diseases, has a substantial genetic component.

Objective: Our goal was to identify novel genes associated with atopy in asthma-ascertained families.

Methods: We implemented a 3-step analysis strategy in 3 data sets: the Epidemiological Study on the Genetics and Environment of Asthma (EGEA) data set (1660 subjects), the Saguenay-Lac-Saint-Jean study data set (1138 subjects), and the Medical Research Council (MRC) data set (446 subjects).

View Article and Find Full Text PDF

Background: Low circulating vitamin D levels have been associated with risk of asthma, atopic dermatitis, and elevated total immunoglobulin E (IgE). These epidemiological associations, if true, would have public health importance, since vitamin D insufficiency is common and correctable.

Methods And Findings: We aimed to test whether genetically lowered vitamin D levels were associated with risk of asthma, atopic dermatitis, or elevated serum IgE levels, using Mendelian randomization (MR) methodology to control bias owing to confounding and reverse causation.

View Article and Find Full Text PDF
Article Synopsis
  • A comprehensive study investigates how genetic variations affect gene expression and epigenetic marks like DNA methylation and histone modifications across a large dataset of 910 samples.
  • About 32% of the tested DNA sites (CpGs) show genetic regulation, while 14% demonstrate potential epigenetic regulation, with specific regions such as enhancers and transcription start sites being highlighted.
  • The findings will enhance understanding of autoimmune diseases and provide valuable resources for future research on the interplay between genetics and epigenetics in the human genome.
View Article and Find Full Text PDF

Motivation: Apart from single marker-based tests classically used in genome-wide association studies (GWAS), network-assisted analysis has become a promising approach to identify a set of genes associated with disease. To date, most network-assisted methods aim at finding genes connected in a background network, whatever the density or strength of their connections. This can hamper the findings as sparse connections are non-robust against noise from either the GWAS results or the network resource.

View Article and Find Full Text PDF

Background: The biological mechanisms by which cleaning products and disinfectants-an emerging risk factor-affect respiratory health remain incompletely evaluated. Studying genes by environment interactions (G × E) may help identify new genes related to adult-onset asthma.

Objectives: We identified interactions between genetic polymorphisms of a large set of genes involved in the response to oxidative stress and occupational exposures to low molecular weight (LMW) agents or irritants on adult-onset asthma.

View Article and Find Full Text PDF

Purpose: Interleukin-1 (IL-1) plays a key role in inflammation and immunity and its decoy receptor, IL-1R2, has been implicated in transcriptomic and genetic studies of asthma.

Methods: Two large asthma family collections, the French-Canadian Saguenay-Lac-St-Jean (SLSJ) study and the French Epidemiological Study on the Genetics and Environment of Asthma (EGEA), were used to investigate the association of SNPs in 10 genes that modulate IL-1R2 activities with asthma, allergic asthma, and atopy. Gene-gene interactions were also tested.

View Article and Find Full Text PDF

Background: Asthma is a heterogeneous disease in which age of onset plays an important role.

Objective: We sought to identify the genetic variants associated with time to asthma onset (TAO).

Methods: We conducted a large-scale meta-analysis of 9 genome-wide association studies of TAO (total of 5462 asthmatic patients with a broad range of age of asthma onset and 8424 control subjects of European ancestry) performed by using survival analysis techniques.

View Article and Find Full Text PDF