Publications by authors named "Emmanuelle Bignon"

The first line of defense against invading pathogens usually relies on innate immune systems. In this context, the recognition of exogenous RNA structures is primordial to fight, notably, against RNA viruses. One of the most efficient immune response pathways is based on the sensing of RNA double helical motifs by the oligoadenylate synthase (OAS) proteins, which in turn triggers the activity of RNase L and, thus, cleaves cellular and viral RNA.

View Article and Find Full Text PDF

Cellular DNA is constantly exposed to endogenous or exogenous factors that can induce lesions. Several types of lesions have been described that can result from UV/ionizing irradiations, oxidative stress, or free radicals, among others. In order to overcome the deleterious effects of such damages, i.

View Article and Find Full Text PDF

Gene activity is tightly controlled by reversible chemical modifications called epigenetic marks, which are of various types and modulate gene accessibility without affecting the DNA sequence. Despite an increasing body of evidence demonstrating the role of oxidative-type modifications of histones in gene expression regulation, there remains a complete absence of structural data at the atomistic level to understand the molecular mechanisms behind their regulatory action. Owing to μs time-scale MD simulations and protein communication networks analysis, we describe the impact of histone H3 hyperoxidation (i.

View Article and Find Full Text PDF

Purpose: This paper aims to introduce an algorithm designed to identify Venous Thromboembolism (VTE) in the French National Healthcare Database (SNDS) and to estimate its positive predictive value.

Methods: A case-identifying algorithm was designed using SNDS inpatient and outpatient encounters, including hospital stays with discharge diagnoses, imaging procedures and drugs dispensed, of French patients aged at least 18 years old to whom baricitinib or Tumor Necrosis Factor Inhibitors (TNFi) were dispensed between September 1, 2017, and December 31, 2018. An intra-database validation study was then conducted, drawing 150 cases identified as VTE by the algorithm and requesting four vascular specialists to assess them.

View Article and Find Full Text PDF

Sirtuin 6 (SIRT6) is an NAD-dependent histone H3 deacetylase that is prominently found associated with chromatin, attenuates transcriptionally active promoters and regulates DNA repair, metabolic homeostasis and lifespan. Unlike other sirtuins, it has low affinity to free histone tails but demonstrates strong binding to nucleosomes. It is poorly understood how SIRT6 docking on nucleosomes stimulates its histone deacetylation activity.

View Article and Find Full Text PDF

The stimulator of interferon genes (STING) protein plays a crucial role in the activation of the innate immune response. Activation of STING is initiated by cyclic dinucleotides (CDNs) which prompted the community to synthesize structural analogues to enhance their biological properties. We present here the synthesis and biological evaluation of four novel CDN analogues composed of an -acylsulfonamide linkage.

View Article and Find Full Text PDF

The genome of SARS-CoV-2 coronavirus is made up of a single-stranded RNA fragment that can assume a specific secondary structure, whose stability can influence the virus's ability to reproduce. Recent studies have identified putative guanine quadruplex sequences in SARS-CoV-2 genome fragments that are involved in coding for both structural and non-structural proteins. In this contribution, we focus on a specific G-rich sequence referred to as RG-2, which codes for the non-structural protein 10 (Nsp10) and assumes a guanine-quadruplex (G4) arrangement.

View Article and Find Full Text PDF

S-glutathionylation is an oxidative post-translational modification, which is involved in the regulation of many cell signaling pathways. Increasing amounts of studies show that it is crucial in cell homeostasis and deregulated in several pathologies. However, the effect of S-glutathionylation on proteins' structure and activity is poorly understood, and a drastic lack of structural information at the atomic scale remains.

View Article and Find Full Text PDF

Background: Cardiovascular comorbidities are not contraindications of bevacizumab for metastatic colorectal cancer.

Objective: We aimed to evaluate the impact of cardiovascular comorbidities before bevacizumab treatment on overall survival and cardiovascular safety in older patients with metastatic colorectal cancer.

Methods: A 2009-2015 cohort of patients with metastatic colorectal cancer aged ≥ 65 years administered first-line bevacizumab was extracted from the French healthcare reimbursement claims database.

View Article and Find Full Text PDF

The Transmembrane Protease Serine 2 (TMPRSS2) is a human enzyme which is involved in the maturation and post-translation of different proteins. In addition to being overexpressed in cancer cells, TMPRSS2 plays a further fundamental role in favoring viral infections by allowing the fusion of the virus envelope with the cellular membrane, notably in SARS-CoV-2. In this contribution, we resort to multiscale molecular modeling to unravel the structural and dynamical features of TMPRSS2 and its interaction with a model lipid bilayer.

View Article and Find Full Text PDF

Guanine quadruplexes (G4s) play essential protective and regulatory roles within cells, influencing gene expression. In several gene-promoter regions, multiple G4-forming sequences are in close proximity and may form three-dimensional arrangements. We analyze the interplay among the three neighboring G4s in the c- proto-oncogene promoter (WK1, WSP, and WK2).

View Article and Find Full Text PDF

Nonstructural accessory proteins in viruses play a key role in hijacking the basic cellular mechanisms, which is essential to promote the virus survival and evasion of the immune system. The immonuglobulin-like open reading frame 8 (ORF8) protein expressed by SARS-CoV-2 accumulates in the nucleus and may influence the regulation of the gene expression in infected cells. In this contribution, by using microsecond time-scale all-atom molecular dynamics simulations, we unravel the structural bases behind the epigenetic action of ORF8.

View Article and Find Full Text PDF

Flaviviruses are enveloped viruses causing high public concerns. Their maturation spans several cellular compartments having different pH. Thus, complex control mechanisms are in place to avoid premature maturation.

View Article and Find Full Text PDF

After a sudden and first spread of the pandemic caused by the novel SARS-CoV-2 (Severe Acute Respiratory Syndrome-Coronavirus 2) wild-type strain, mutants have emerged which have been associated with increased infectivity, inducing surges in the contagions. The first of the so-called variants of concerns, was firstly isolated in the United Kingdom and later renamed Alpha variant. Afterwards, in the middle of 2021, a new variant appeared called Delta.

View Article and Find Full Text PDF

Guanine quadruplexes (G4s) are nucleic acid structures exhibiting a complex structural behavior and exerting crucial biological functions in both cells and viruses. The specific interactions of peptides with G4s, as well as an understanding of the factors driving the specific recognition are important for the rational design of both therapeutic and diagnostic agents. In this review, we examine the most important studies dealing with the interactions between G4s and peptides, highlighting the strengths and limitations of current analytic approaches.

View Article and Find Full Text PDF

Objectives: To conduct the direct comparison of abiraterone acetate and docetaxel for first-line treatment of metastatic castration-resistant prostate cancer (mCRPC) in real-life settings.

Methods: Data were extracted from the French nationwide claims database (SNDS) on all men aged ≥40 years starting first-line treatment with abiraterone acetate or docetaxel for mCRPC in 2014. A high-dimensional propensity score including 100 baseline characteristics was used to match patients of both groups and form two comparative cohorts.

View Article and Find Full Text PDF

Viral infection relies on the hijacking of cellular machineries to enforce the reproduction of the infecting virus and its subsequent diffusion. In this context, the replication of the viral genome is a key step performed by specific enzymes, i.e.

View Article and Find Full Text PDF

We investigated the mechanisms leading to the specific recognition of Guanine Guadruplex (G4) by DARPins peptides, which can lead to the design of G4 s specific sensors. To this end we carried out all-atom molecular dynamic simulations to unravel the interactions between specific nucleic acids, including human-telomeric (h-telo), Bcl-2, and c-Myc, with different peptides, forming a DARPin/G4 complex. By comparing the sequences of DARPin with that of a peptide known for its high affinity for c-Myc, we show that the recognition cannot be ascribed to sequence similarity but, instead, depends on the complementarity between the three-dimensional arrangement of the molecular fragments involved: the α-helix/loops domain of DARPin and the G4 backbone.

View Article and Find Full Text PDF

In the last few years, the sudden outbreak of COVID-19 caused by SARS-CoV-2 proved the crucial importance of understanding how emerging viruses work and proliferate, in order to avoid the repetition of such a dramatic sanitary situation with unprecedented social and economic costs. West Nile Virus is a mosquito-borne pathogen that can spread to humans and induce severe neurological problems. This RNA virus caused recent remarkable outbreaks, notably in Europe, highlighting the need to investigate the molecular mechanisms of its infection process in order to design and propose efficient antivirals.

View Article and Find Full Text PDF

The viral cycle of SARS-CoV-2 is based on a complex interplay with the cellular machinery, which is mediated by specific proteins eluding or hijacking the cellular defense mechanisms. Among the complex pathways induced by the viral infection, autophagy is particularly crucial and is strongly influenced by the action of the non-structural protein 6 (Nsp6) interacting with the endoplasmic reticulum membrane. Importantly, differently from other non-structural proteins, Nsp6 is mutated in the recently emerged Omicron variant, suggesting a possible different role of autophagy.

View Article and Find Full Text PDF

The stimulator of interferon genes (STING) protein is a cornerstone of the human immune response. Its activation by cGAMP in the presence of cytosolic DNA stimulates the production of type I interferons and inflammatory cytokines. In the human population, several STING variants exist and exhibit dramatic differences in their activity, impacting the efficiency of the host defense against infections.

View Article and Find Full Text PDF

DNA integrity is an important factor that assures genome stability and, more generally, the viability of cells and organisms. In the presence of DNA damage, the normal cell cycle is perturbed when cells activate their repair processes. Although efficient, the repair system is not always able to ensure complete restoration of gene integrity.

View Article and Find Full Text PDF

Like all viral infections, SARS-CoV-2 acts at multiple levels, hijacking fundamental cellular functions and assuring its replication and immune system evasion. In particular, the viral 3' Open Reading Frame (ORF3a) codes for a hydrophobic protein, which embeds in the cellular membrane, where it acts as an ion viroporin and is related to strong inflammatory response. Here we report equilibrium and enhanced sampling molecular dynamic simulation of the SARS-CoV-2 ORF3a in a model lipid bilayer, showing how the protein permeabilizes the lipid membrane, via the formation of a water channel, which in turn assures ion transport.

View Article and Find Full Text PDF

2'-5'-Oligoadenylate synthetase 1 (OAS1) is one of the key enzymes driving the innate immune system response to SARS-CoV-2 infection whose activity has been related to COVID-19 severity. OAS1 is a sensor of endogenous RNA that triggers the 2'-5'-oligoadenylate/RNase L pathway. Upon SARS-CoV-2 infection, OAS1 is responsible for the recognition of viral RNA and has been shown to possess a particularly high sensitivity for the 5'-untranslated (5'-UTR) RNA region, which is organized in a double-strand stem loop motif (SL1).

View Article and Find Full Text PDF

Flavonoids are secondary metabolites ubiquitously found in plants. Their antioxidant properties make them highly interesting natural compounds for use in pharmacology. Therefore, unravelling the mechanisms of flavonoid biosynthesis is an important challenge.

View Article and Find Full Text PDF