Publications by authors named "Emmanuelle Bayer"

Diverging from conventional cell division models, plant cells undergo incomplete division to generate plasmodesmata communication bridges between daughter cells. Although fundamental for plant multicellularity, the molecular events leading to bridge stabilization, as opposed to severing, remain unknown. Using electron tomography, we mapped the transition from cell plate fenestrae to plasmodesmata.

View Article and Find Full Text PDF

Unlabelled: Diverging from conventional cell division models, plant cells undergo incomplete division to generate plasmodesmata communication bridges between daughter cells. While fundamental for plant multicellularity, the molecular events leading to bridge stabilization, as opposed to severing, remain unknown. Using electron tomography, we mapped the transition from cell plate fenestrae to plasmodesmata.

View Article and Find Full Text PDF

The control of cell-cell communication via plasmodesmata (PD) plays a key role in plant development. In tree buds, low-temperature conditions (LT) induce a switch in plasmodesmata from a closed to an open state, which restores cell-to-cell communication in the shoot apex and releases dormancy. Using genetic and cell-biological approaches, we have identified a previously uncharacterized transcription factor, Low-temperature-Induced MADS-box 1 (LIM1), as an LT-induced, direct upstream activator of the gibberellic acid (GA) pathway.

View Article and Find Full Text PDF

Biological membranes play a crucial role in actively hosting, modulating and coordinating a wide range of molecular events essential for cellular function. Membranes are organized into diverse domains giving rise to dynamic molecular patchworks. However, the very definition of membrane domains has been the subject of continuous debate.

View Article and Find Full Text PDF

CRISPR-Cas9 technology has become an essential tool for plant genome editing. Recent advancements have significantly improved the ability to target multiple genes simultaneously within the same genetic background through various strategies. Additionally, there has been significant progress in developing methods for inducible or tissue-specific editing.

View Article and Find Full Text PDF

FW2.2 (standing for FRUIT WEIGHT 2.2), the founding member of the CELL NUMBER REGULATOR (CNR) gene family, was the first cloned gene underlying a quantitative trait locus (QTL) governing fruit size and weight in tomato (Solanum lycopersicum).

View Article and Find Full Text PDF

Multicellularity has emerged multiple times in evolution, enabling groups of cells to share a living space and reducing the burden of solitary tasks. While unicellular organisms exhibit individuality and independence, cooperation among cells in multicellular organisms brings specialization and flexibility. However, multicellularity also necessitates intercellular dependence and relies on intercellular communication.

View Article and Find Full Text PDF

Molecular motifs can explain information processing within single cells, while how assemblies of cells collectively achieve this remains less well understood. Plant fitness and survival depend upon robust and accurate decision-making in their decentralised multicellular organ systems. Mobile agents, including hormones, metabolites, and RNAs, have a central role in coordinating multicellular collective decision-making, yet mechanisms describing how cell-cell communication scales to organ-level transitions is poorly understood.

View Article and Find Full Text PDF

Brassinosteroids (BRs) are steroidal phytohormones that are essential for plant growth, development and adaptation to environmental stresses. BRs act in a dose-dependent manner and do not travel over long distances; hence, BR homeostasis maintenance is critical for their function. Biosynthesis of bioactive BRs relies on the cell-to-cell movement of hormone precursors.

View Article and Find Full Text PDF

Cell division is fundamental for living organisms, sustaining their growth and development. During cell division a single mother cell will duplicate its genome and organelles, and give rise to two independent entities that will eventually split apart in a tightly regulated process called abscission or the final-cut. In multicellular organisms, newly born daughter cells split apart while they simultaneously need to maintain contact for intercellular communication.

View Article and Find Full Text PDF

Lattice light-sheet microscopy (LLSM) is a very efficient technique for high resolution 3D imaging of dynamic phenomena in living biological samples. However, LLSM imaging remains limited in depth due to optical aberrations caused by sample-based refractive index mismatch. Here, we propose a simple and low-cost active image optimization (AIO) method to recover high resolution imaging inside thick biological samples.

View Article and Find Full Text PDF
Article Synopsis
  • Iron is vital for interactions between hosts and pathogens, with pathogens trying to obtain iron while hosts reduce its availability to hinder pathogen growth.
  • Researchers identified receptor kinase SRF3, which plays a key role in coordinating root growth, iron balance, and immune responses through the regulation of callose synthases.
  • SRF3’s function is influenced by iron levels and its structure, and its behavior mirrors the immune response triggered by bacterial signals, suggesting its involvement in nutritional immunity by sensing external iron levels.
View Article and Find Full Text PDF

Plasmodesmata (PD) are membranous intercellular nanochannels crossing the plant cell wall to connect adjacent cells in plants. Our understanding of PD function heavily relies on the identification of their molecular components, these being proteins or lipids. In that regard, proteomic and lipidomic analyses of purified PD represent a crucial strategy in the field.

View Article and Find Full Text PDF

Plant plasmodesmata (PD) are complex intercellular channels consisting of a thin endoplasmic reticulum (ER) tubule enveloped by the plasma membrane (PM). PD were first observed by electron microscopy about 50 years ago and, since, numerous studies in transmission and scanning electron microscopy have provided important information regarding their overall organization, revealing at the same time their diversity in terms of structure and morphology. However, and despite the fact that PD cell-cell communication is of critical importance for plant growth, development, cellular patterning, and response to biotic and abiotic stresses, linking their structural organization to their functional state has been proven difficult.

View Article and Find Full Text PDF

Despite recent progress in our understanding of graft union formation, we still know little about the cellular events underlying the grafting process. This is partially due to the difficulty of reliably targeting the graft interface in electron microscopy to study its ultrastructure and three-dimensional architecture. To overcome this technological bottleneck, we developed a correlative light electron microscopy (CLEM) approach to study the graft interface with high ultrastructural resolution.

View Article and Find Full Text PDF

In this glossary of plant cell structures, we asked experts to summarize a present-day view of plant organelles and structures, including a discussion of outstanding questions. In the following short reviews, the authors discuss the complexities of the plant cell endomembrane system, exciting connections between organelles, novel insights into peroxisome structure and function, dynamics of mitochondria, and the mysteries that need to be unlocked from the plant cell wall. These discussions are focused through a lens of new microscopy techniques.

View Article and Find Full Text PDF

A vast majority of cellular processes take root at the surface of biological membranes. By providing a two-dimensional platform with limited diffusion, membranes are, by nature, perfect devices to concentrate signaling and metabolic components. As such, membranes often act as "key processors" of cellular information.

View Article and Find Full Text PDF

Intercellular communication plays a crucial role in the establishment of multicellular organisms by organizing and coordinating growth, development and defence responses. In plants, cell-to-cell communication takes place through nanometric membrane channels called plasmodesmata (PD). Understanding how PD dictate cellular connectivity greatly depends on a comprehensive knowledge of the molecular composition and the functional characterization of PD components.

View Article and Find Full Text PDF

Plasmodesmata are intercellular pores connecting together most plant cells. These structures consist of a central constricted form of the endoplasmic reticulum, encircled by some cytoplasmic space, in turn delimited by the plasma membrane, itself ultimately surrounded by the cell wall. The presence and structure of plasmodesmata create multiple routes for intercellular trafficking of a large spectrum of molecules (encompassing RNAs, proteins, hormones and metabolites) and also enable local signalling events.

View Article and Find Full Text PDF

Plasmodesmata pores control the entry and exit of molecules at cell-to-cell boundaries. Hundreds of pores perforate the plant cell wall, connecting cells together and establishing direct cytosolic and membrane continuity. This ability to connect cells in such a way is a hallmark of plant physiology and is thought to have allowed sessile multicellularity in Plantae kingdom.

View Article and Find Full Text PDF

Plasmodesmata act as key elements in intercellular communication, coordinating processes related to plant growth, development, and responses to environmental stresses. While many of the developmental, biotic, and abiotic signals are primarily perceived at the plasma membrane (PM) by receptor proteins, plasmodesmata also cluster receptor-like activities; whether these two pathways interact is currently unknown. Here, we show that specific PM-located Leu-rich-repeat receptor-like-kinases, Qiān Shŏu kinase (QSK1) and inflorescence meristem kinase2, which under optimal growth conditions are absent from plasmodesmata, rapidly relocate and cluster to the pores in response to osmotic stress.

View Article and Find Full Text PDF

In eukaryotes, membrane contact sites (MCS) allow direct communication between organelles. Plants have evolved a unique type of MCS, inside intercellular pores, the plasmodesmata, where endoplasmic reticulum (ER)-plasma membrane (PM) contacts coincide with regulation of cell-to-cell signalling. The molecular mechanism and function of membrane tethering within plasmodesmata remain unknown.

View Article and Find Full Text PDF

During phloem unloading, multiple cell-to-cell transport events move organic substances to the root meristem. Although the primary unloading event from the sieve elements to the phloem pole pericycle has been characterized to some extent, little is known about post-sieve element unloading. Here, we report a novel gene, PHLOEM UNLOADING MODULATOR (PLM), in the absence of which plasmodesmata-mediated symplastic transport through the phloem pole pericycle-endodermis interface is specifically enhanced.

View Article and Find Full Text PDF