Introduction: Walking is essential for daily life but poses a significant challenge for many individuals with neurological conditions like cerebral palsy (CP), which is the leading cause of childhood walking disability. Although lower-limb exoskeletons show promise in improving walking ability in laboratory and controlled overground settings, it remains unknown whether these benefits translate to real-world environments, where they could have the greatest impact.
Methods: This feasibility study evaluated whether an untethered ankle exoskeleton with an adaptable controller can improve spatiotemporal outcomes in eight individuals with CP after low-frequency exoskeleton-assisted gait training on real-world terrain.
IEEE Trans Med Robot Bionics
February 2024
Despite medical treatment focused on addressing walking disability, many millions of people with neurological conditions, like cerebral palsy (CP), struggle to maintain independent mobility. Lower limb exoskeletons and exosuits may hold potential for augmenting walking ability. However, it remains unknown whether these wearable robots are safe and beneficial for use outside of highly controlled laboratory environments, the demonstration of which is necessary for clinical translation.
View Article and Find Full Text PDF