Publications by authors named "Emmanuel Yumvihoze"

Smelting activities at Giant Mine (Yellowknife, NWT, Canada) have resulted in high sulfate and arsenic concentrations in nearby lakes. Here we tested whether historic smelting affects current mercury (Hg) cycling in 35 freshwater lakes over a 2800 km area around the former gold mine. We sampled lake water and sediment over three consecutive years (2015-2017) using a factorial sampling design that accounted for different environmental variables known to affect the net methylmercury (MeHg) levels in water.

View Article and Find Full Text PDF

Purpose: The Yellowknife Health Effects Monitoring Programme (YKHEMP) was established to examine the relationship of exposure to arsenic and other chemicals of potential concern such as antimony, cadmium, lead, manganese and vanadium and health outcomes.

Participants: A total of 2037 individuals were recruited, including children (age 3-19) and adults (age 20+), residing in Dettah, Ndilǫ and Yellowknife, in the Northwest Territories, Canada, in two waves in Fall 2017 and Spring 2018. In Yellowknife, there were 891 (675 adults, 216 children), randomly selected participants with a participation rate of 64%.

View Article and Find Full Text PDF

Background: In parts of Cambodia and in many other parts of the world, irrigation of rice with groundwater results in arsenic (As) accumulation in soil and rice, leading to health concerns associated with rice consumption. At times, some As is present as relatively nontoxic, non-regulated, dimethylarsinic acid (DMA). Low levels of zinc (Zn) have been found in rice from Bangladesh, Cambodia, and China where As levels in rice are high.

View Article and Find Full Text PDF

Background: Arsenic bioaccumulation in rice is a global concern affecting food security and public health.

Objective: The present study examined arsenic species in rice in Cambodia to characterize health risks with rice consumption and to clarify uncertainties with Codex guidelines.

Methods: The present study collected 61 well water samples, 105 rice samples, 70 soil samples, and conducted interviews with 44 families in Preak Russey near the Bassac River and Kandal Province along the Mekong River in Cambodia.

View Article and Find Full Text PDF

Background: In parts of Cambodia, irrigation with groundwater results in arsenic accumulation in soils and rice, leading to health concerns associated with rice consumption. A high concentration of iron in groundwater can precipitate arsenic and reduce its bioavailability, however high concentrations of arsenic and iron can also reduce rice production. Furthermore, concerns have been raised about chemical contamination from inorganic fertilizers used to grow rice.

View Article and Find Full Text PDF

Monomethylmercury (MMHg) is a potent neurotoxicant that can be bioaccumulated and biomagnified through trophic levels. Human populations whose diets contain MMHg are at risk of MMHg toxicity. The gut microbiota was identified as a potential factor causing variation in MMHg absorption and body burden.

View Article and Find Full Text PDF

Wildlife are exposed to neurotoxic mercury at locations distant from anthropogenic emission sources because of long-range atmospheric transport of this metal. In this study, mercury bioaccumulation in insectivorous bat species (Mammalia: Chiroptera) was investigated on a broad geographic scale in Canada. Fur was analyzed (n=1178) for total mercury from 43 locations spanning 20° latitude and 77° longitude.

View Article and Find Full Text PDF

The mechanism of intracellular metabolism of methylmercury (MeHg) is not fully known. It has been shown that superoxide (O2(-)), the proximal reactive oxygen species (ROS) generated by mitochondria, is responsible for MeHg demethylation. Here, we investigated the impact of different mitochondrial respiratory inhibitors, namely rotenone and antimycin A, on the O2(-)mediated degradation of MeHg in human neuroblastoma cells SH-K-SN.

View Article and Find Full Text PDF

Methylmercury (MeHg) is a global pollutant that is affecting the health of millions of people worldwide. However, the mechanism of MeHg toxicity still remains somewhat elusive and there is no treatment. It has been known for some time that MeHg can be progressively converted to inorganic mercury (iHg) in various tissues including the brain.

View Article and Find Full Text PDF

Background: Blood lead levels (BLLs) were measured in the adult Inuit population of Nunavut, Northern Canada, during the Inuit Health Survey (IHS) in 2007-2008. Approximately 10% of the adult participants had BLL over the Health Canada's guidance of 100μg/L.

Objectives: 1) To repeat the measurement of BLL among the IHS participants with high BLL and household members including pregnant women and children under 10years of age; 2) to measure lead (Pb) concentrations in environmental samples to identify potential sources and 3) to explore how Pb from environmental samples contributes to BLL using Pb stable isotopic analyses.

View Article and Find Full Text PDF

Sulfate (SO4(2-)) and mercury (Hg) are airborne pollutants transported to the Arctic where they can affect properties of the atmosphere and the health of marine or terrestrial ecosystems. Detecting trends in Arctic Hg pollution is challenging because of the short period of direct observations, particularly of actual deposition. Here, we present an updated proxy record of atmospheric SO4(2-) and a new 40-year record of total Hg (THg) and monomethyl Hg (MeHg) deposition developed from a firn core (P2010) drilled from Penny Ice Cap, Baffin Island, Canada.

View Article and Find Full Text PDF

Despite the alarming trends of declining base cation concentrations in boreal lakes, no studies have attempted to predict the consequences of this decline on the geochemical cycle of mercury, a top priority contaminant worldwide. In this study, we used a whole-cell gram-negative bioreporter to evaluate the direction and magnitude of changes in net accumulation of Hg(II) by bacteria in response to changing base cation concentrations. We show that regardless of the speciation of Hg(II) in solution, increasing divalent base cation concentrations decrease net Hg(II) accumulation by the bioreporter, suggesting a protective effect of these cations.

View Article and Find Full Text PDF

Surface snow samples were collected weekly from the 31st of December 2008 to the 21st of June 2009 from Lake Bramant in the French Alps. Total mercury (THg), total dissolved mercury (THgD), methylmercury (MeHg) and particle distributions in surface snow were analyzed. Results showed that THg concentrations, MeHg concentrations and particle load increased with snow surface temperature, which is an indicator of rising temperatures as the season progresses.

View Article and Find Full Text PDF

The activity of various anaerobic microbes, including sulfate reducers (SRB), iron reducers (FeRP) and methanogens (MPA) has been linked to mercury methylation in aquatic systems, although the relative importance of each microbial group in the overall process is poorly understood in natural sediments. The present study focused on the biogeochemical factors (i.e.

View Article and Find Full Text PDF

Many procedures have been developed to measure the concentration of monomethylmercury (MeHg) from different sample matrices, and the use of stable isotopes of mercury now provides opportunities to determine its formation and degradation rates. Here, a modified procedure for measuring mercury isotopes in sediment samples that uses acid leaching-ion exchange-thiosulfate extraction (TSE) to isolate and purify the methylated mercury from the matrix is proposed. The latter is followed by aqueous-phase ethylation, purge and trap on Tenax, gas chromatography separation of ethylated mercury compounds, and inductively coupled plasma mass spectrometry detection.

View Article and Find Full Text PDF

Even at low concentrations in the environment, mercury has the potential to biomagnify in food chains and reaches levels of concern in apex predators. The aim of this study was to relate the transfer of total mercury (THg) and methylmercury (MeHg) in a Gulf of St. Lawrence food web to the trophic structure, from primary consumers to seabirds, using stable nitrogen (δ(15)N) and carbon (δ(13)C) isotope analysis and physical environmental parameters.

View Article and Find Full Text PDF