Rare meson decays are among the most sensitive probes of both heavy and light new physics. Among them, new physics searches using kaons benefit from their small total decay widths and the availability of very large datasets. On the other hand, useful complementary information is provided by hyperon decay measurements.
View Article and Find Full Text PDFThe parameter ε_{K} describes CP violation in the neutral kaon system and is one of the most sensitive probes of new physics. The large uncertainties related to the charm-quark contribution to ε_{K} have so far prevented a reliable standard-model prediction. We show that Cabibbo-Kobayashi-Maskawa unitarity enforces a unique form of the |ΔS=2| weak effective Lagrangian in which the short-distance theory uncertainty of the imaginary part is dramatically reduced.
View Article and Find Full Text PDFWe study quantum electrodynamics in d=3 coupled to N_{f} flavors of fermions. The theory flows to an IR fixed point for N_{f} larger than some critical number N_{f}^{c}. For N_{f}≤N_{f}^{c}, chiral-symmetry breaking is believed to take place.
View Article and Find Full Text PDFWe combine our new results for the O(αem) and O(αs2) corrections to Bs,d→ℓ+ℓ-, and present updated branching ratio predictions for these decays in the standard model. Inclusion of the new corrections removes major theoretical uncertainties of perturbative origin that have just begun to dominate over the parametric ones. For the recently observed muonic decay of the Bs meson, our calculation gives B¯(Bs→μ+μ-)=(3.
View Article and Find Full Text PDF