Kainic acid activates non-N-methyl-d-aspartate (NMDA) glutamate receptors where it increases synaptic activity resulting in seizures, neurodegeneration, and remodeling. We performed microarray analysis on rat hippocampal tissue following kainic acid treatment in order to study the signaling mechanisms underlying these diverse processes in an attempt to increase our current understanding of mechanisms contributing to such fundamental processes as neuronal protection and neuronal plasticity. The kainic acid-treated rats used in our array experiments demonstrated severe seizure behavior that was also accompanied by neuronal degeneration which is suggested by fluoro-jade B staining and anti-caspase-3 immunohistochemistry.
View Article and Find Full Text PDFElectroconvulsive seizure therapy (ECS) is a clinically proven treatment for depression and is often effective even in patients resistant to chemical antidepressants. However, the molecular mechanisms underlying the therapeutic efficacy of ECS are not fully understood. One theory that has gained attention is that ECS and other antidepressants increase the expression of select neurotrophic factors that could reverse or block the atrophy and cell loss resulting from stress and depression.
View Article and Find Full Text PDFBiosens Bioelectron
September 2002
An ion-sensitive field effect transistor (ISFET)-based immunosensor was developed to detect/quantitate beta-Bungarotoxin (beta-BuTx), a potent presynaptic neurotoxin from the venom of Bungarus multicinctus. A murine monoclonal antibody (mAb 15) specific to beta-BuTx was immobilized onto silicon nitride wafers after silanization and activation with glutaraldehyde. A chip based enzyme linked-immunosorbantassay (ELISA) was performed to ascertain antigen binding to the immobilized antibody.
View Article and Find Full Text PDFA highly sensitive avidin-biotin optical immunoassay (AB-OIA) has been developed for the detection of beta-bungarotoxin (beta-BuTx), a neurotoxin from the venom of Bungarus multicinctus, in whole blood, plasma, and urine. Affinity purified rabbit IgG anti-beta-BuTx antibody was immobilized on an optically active silicon surface (SILIAS wafer). The test sample was incubated and the antigen-antibody reaction was monitored by the addition of a biotinylated monoclonal antibody (mAb 15) specific to the toxin, avidin-horseradish peroxidase (HRP) and tetramethylbenzidine substrate.
View Article and Find Full Text PDF