Histone H3 arginine 2 (H3R2) is post-translationally modified in three different states by "writers" of the protein arginine methyltransferase (PRMT) family. H3R2 methylarginine isoforms include PRMT5-catalyzed monomethylation (me1) and symmetric dimethylation (me2s) and PRMT6-catalyzed me1 and asymmetric dimethylation (me2a). WD-40 repeat-containing protein 5 (WDR5) is an epigenetic "reader" protein that interacts with H3R2.
View Article and Find Full Text PDFPharmacological strategies that boost intracellular NAD are highly coveted for their therapeutic potential. One approach is activation of nicotinamide phosphoribosyltransferase (NAMPT) to increase production of nicotinamide mononucleotide (NMN), the predominant NAD precursor in mammalian cells. A high-throughput screen for NAMPT activators and hit-to-lead campaign yielded SBI-797812, a compound that is structurally similar to active-site directed NAMPT inhibitors and blocks binding of these inhibitors to NAMPT.
View Article and Find Full Text PDFA hallmark of aging is a decline in metabolic homeostasis, which is attenuated by dietary restriction (DR). However, the interaction of aging and DR with the metabolome is not well understood. We report that DR is a stronger modulator of the rat metabolome than age in plasma and tissues.
View Article and Find Full Text PDFMethyltransferases use -adenosyl-l-methionine (SAM) to deposit methyl marks. Many of these epigenetic 'writers' are associated with gene regulation. As cancer etiology is highly correlated with misregulated methylation patterns, methyltransferases are emerging therapeutic targets.
View Article and Find Full Text PDF5'-Methylthioadenosine/S-adenosyl-l-homocysteine nucleosidases (MTANs) catalyze the hydrolysis of 5'-methylthioadenosine to adenine and 5-methylthioribose. The amino acid sequences of the MTANs from Vibrio cholerae (VcMTAN) and Escherichia coli (EcMTAN) are 60% identical and 75% similar. Protein structure folds and kinetic properties are similar.
View Article and Find Full Text PDFNucleoplasmin (Npm) is an abundant histone chaperone in vertebrate oocytes and embryos. During embryogenesis, regulation of Npm histone binding is critical for its function in storing and releasing maternal histones to establish and maintain the zygotic epigenome. Here, we demonstrate that Xenopus laevis Npm post-translational modifications (PTMs) specific to the oocyte and egg promote either histone deposition or sequestration, respectively.
View Article and Find Full Text PDFThe protein arginine methyltransferase PRMT5 is complexed with the WD repeat protein MEP50 (also known as Wdr77 or androgen coactivator p44) in vertebrates in a tetramer of heterodimers. MEP50 is hypothesized to be required for protein substrate recruitment to the catalytic domain of PRMT5. Here we demonstrate that the cross-dimer MEP50 is paired with its cognate PRMT5 molecule to promote histone methylation.
View Article and Find Full Text PDFMacrodomains, including the human macrodomain 1 (MacroD1), are erasers of the post-translational modification of monoadenosinediphospho-ribosylation and hydrolytically deacetylate the sirtuin product O-acetyl-ADP-ribose (OAADPr). OAADPr has been reported to play a role in cell signaling based on oocyte microinjection studies, and macrodomains affect an array of cell processes including transcription and response to DNA damage. Here, we investigate human MacroD1 by transition-state (TS) analysis based on kinetic isotope effects (KIEs) from isotopically labeled OAADPr substrates.
View Article and Find Full Text PDFThe C-P lyase complex in bacteria catalyzes the transformation of phosphonates to orthophosphate under conditions of phosphate starvation. The first committed step in the C-P lyase-catalyzed reaction is the displacement of adenine from MgATP by phosphonate substrates, yielding ribose-1-phosphonate-5-triphosphate. In the C-P lyase complex, this reaction is catalyzed by the nucleosidase PhnI and modulated by the addition of PhnG, PhnH, and PhnL.
View Article and Find Full Text PDFHuman nicotinamide phosphoribosyltransferase (NAMPT) replenishes the NAD pool and controls the activities of sirtuins, mono- and poly-(ADP-ribose) polymerases, and NAD nucleosidase. The nature of the enzymatic transition-state (TS) is central to understanding the function of NAMPT. We determined the TS structure for pyrophosphorolysis of nicotinamide mononucleotide (NMN) from kinetic isotope effects (KIEs).
View Article and Find Full Text PDFMalaria tropica is a devastating infectious disease caused by Plasmodium falciparum. This parasite synthesizes vitamin B6 de novo via the PLP (pyridoxal 5'-phosphate) synthase enzymatic complex consisting of PfPdx1 and PfPdx2 proteins. Biosynthesis of PLP is largely performed by PfPdx1, ammonia provided by PfPdx2 subunits is condensed together with R5P (D-ribose 5-phosphate) and G3P (DL-glyceraldehyde 3-phosphate).
View Article and Find Full Text PDF5'-Methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) catalyzes the hydrolytic cleavage of adenine from methylthioadenosine (MTA). Inhibitor design and synthesis informed by transition state analysis have developed femtomolar inhibitors for MTANs, among the most powerful known noncovalent enzyme inhibitors. Thermodynamic analyses of the inhibitor binding reveals a combination of highly favorable contributions from enthalpic (-24.
View Article and Find Full Text PDFS-Adenosyl-L-homocysteine hydrolase (SAHH) catalyzes the reversible conversion of S-adenosyl-L-homocysteine (SAH) to adenosine (ADO) and L-homocysteine, promoting methyltransferase activity by relief of SAH inhibition. SAH catabolism is linked to S-adenosylmethionine metabolism, and the development of SAHH inhibitors is of interest for new therapeutics with anticancer or cholesterol-lowering effects. We have developed a continuous enzymatic assay for adenosine that facilitates high-throughput analysis of SAHH.
View Article and Find Full Text PDFGenome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2009
Nicotinamide phosphoribosyltransferase (NAMPT) is highly evolved to capture nicotinamide (NAM) and replenish the nicotinamide adenine dinucleotide (NAD(+)) pool during ADP-ribosylation and transferase reactions. ATP-phosphorylation of an active-site histidine causes catalytic activation, increasing NAM affinity by 160,000. Crystal structures of NAMPT with catalytic site ligands identify the phosphorylation site, establish its role in catalysis, demonstrate unique overlapping ATP and phosphoribosyltransferase sites, and establish reaction coordinate motion.
View Article and Find Full Text PDF