Publications by authors named "Emmanuel Payen"

Background Aims: Gene therapy using lentiviral vectors (LVs) that harbor a functional β-globin gene provides a curative treatment for hemoglobinopathies including beta-thalassemia and sickle cell disease. Accurate quantification of the vector copy number (VCN) and/or the proportion of transduced cells is critical to evaluate the efficacy of transduction and stability of the transgene during treatment. Moreover, commonly used techniques for LV quantification, including real-time quantitative polymerase chain reaction (PCR) or fluorescence-activated cell sorting, require either a standard curve or expression of a reporter protein for the detection of transduced cells.

View Article and Find Full Text PDF

Sickle cell disease (SCD) and transfusion-dependent β-thalassemia (TDT) are the most prevalent monogenic disorders worldwide. Trial HGB-205 ( NCT02151526 ) aimed at evaluating gene therapy by autologous CD34 cells transduced ex vivo with lentiviral vector BB305 that encodes the anti-sickling β-globin expressed in the erythroid lineage. HGB-205 is a phase 1/2, open-label, single-arm, non-randomized interventional study of 2-year duration at a single center, followed by observation in long-term follow-up studies LTF-303 ( NCT02633943 ) and LTF-307 ( NCT04628585 ) for TDT and SCD, respectively.

View Article and Find Full Text PDF

A primary challenge in lentiviral gene therapy of β-hemoglobinopathies is to maintain low vector copy numbers to avoid genotoxicity while being reliably therapeutic for all genotypes. We designed a high-titer lentiviral vector, LVβ-shα2, that allows coordinated expression of the therapeutic β-globin gene and of an intron-embedded miR-30-based short hairpin RNA (shRNA) selectively targeting the α2-globin mRNA. Our approach was guided by the knowledge that moderate reduction of α-globin chain synthesis ameliorates disease severity in β-thalassemia.

View Article and Find Full Text PDF

Human parvovirus B19 (B19V) causes various human diseases, ranging from childhood benign infection to arthropathies, severe anemia and fetal hydrops, depending on the health state and hematological status of the patient. To counteract B19V blood-borne contamination, evaluation of B19 DNA in plasma pools and viral inactivation/removal steps are performed, but nucleic acid testing does not correctly reflect B19V infectivity. There is currently no appropriate cellular model for detection of infectious units of B19V.

View Article and Find Full Text PDF

β-Globin gene transfer has been used as a paradigm for hematopoietic stem cell (HSC) gene therapy, but is subject to major difficulties, such as the lack of selection of genetically corrected HSCs, the need for high-level expression of the therapeutic gene, and cell-specific transgene expression. It took more than 40 years for scientists and physicians to advance from the cloning of globin gene and discovering globin gene mutations to improving our understanding of the pathophysiological mechanisms involved, the detection of genetic modifiers, the development of animal models and gene transfer vectors, comprehensive animal testing, and demonstrations of phenotypic improvement in clinical trials, culminating in the authorization of the first gene therapy product for β-thalassemia in 2019. Research has focused mostly on the development of lentiviral gene therapy vectors expressing variants of the β-globin gene or, more recently, targeting a γ-globin repressor, some of which have entered clinical testing and should soon diversify the available treatments and promote price competition.

View Article and Find Full Text PDF

Recent marketing approval for genetically engineered hematopoietic stem and T cells bears witness to the substantial improvements in lentiviral vectors over the last two decades, but evaluations of the long-term efficacy and toxicity of gene and cell therapy products will, nevertheless, require further studies in nonhuman primate models. monkeys from Mauritius have a low genetic diversity and are particularly useful for reproducible drug testing. In particular, they have a genetically homogeneous class I major histocompatibility complex system that probably mitigates the variability of the response to simian immunodeficiency virus infection.

View Article and Find Full Text PDF

The β-hemoglobinopathies, transfusion-dependent β-thalassemia and sickle cell disease, are the most prevalent inherited disorders worldwide and affect millions of people. Many of these patients have a shortened life expectancy and suffer from severe morbidity despite supportive therapies, which impose an enormous financial burden to societies. The only available curative therapy is allogeneic hematopoietic stem cell transplantation, although most patients do not have an HLA-matched sibling donor, and those who do still risk life-threatening complications.

View Article and Find Full Text PDF
Article Synopsis
  • The study aims to assess the safety and effectiveness of gene therapy as an alternative to long-term red-cell transfusions for patients with transfusion-dependent β-thalassemia, focusing on the use of a lentiviral vector to modify patients' cells.
  • In two phase 1-2 trials involving 22 patients aged 12 to 35, researchers collected and modified the patients' own blood cells with a gene that encodes for adult hemoglobin, followed by reinfusing these cells after conditioning treatment.
  • Results showed significant improvements: 12 out of 13 patients with a non-β/β genotype stopped needing transfusions, while those with the β/β genotype experienced a
View Article and Find Full Text PDF

Although gene transfer to hematopoietic stem cells (HSCs) has shown therapeutic efficacy in recent trials for several individuals with inherited disorders, transduction incompleteness of the HSC population remains a hurdle to yield a cure for all patients with reasonably low integrated vector numbers. In previous attempts at HSC selection, massive loss of transduced HSCs, contamination with non-transduced cells, or lack of applicability to large cell populations has rendered the procedures out of reach for human applications. Here, we fused codon-optimized puromycin N-acetyltransferase to herpes simplex virus thymidine kinase.

View Article and Find Full Text PDF
Article Synopsis
  • Gene therapy faces challenges due to complex cellular issues and the need to effectively curb hemoglobin S polymerization.
  • A patient treated with a lentiviral vector to add a healthy β-globin gene showed lasting treatment benefits, maintaining high levels of antisickling β-globin without sickle crises for 15 months post-treatment.
View Article and Find Full Text PDF

We have reported that of the 10 commonly used AAV serotype vectors, AAV6 is the most efficient in transducing primary human hematopoietic stem/progenitor cells (HSPCs). However, the transduction efficiency of the wild-type (WT) AAV6 vector varies greatly in HSPCs from different donors. Here we report two distinct strategies to further increase the transduction efficiency in HSPCs from donors that are transduced less efficiently with the WT AAV6 vectors.

View Article and Find Full Text PDF

Beta-thalassemia is a group of frequent genetic disorders resulting in the synthesis of little or no β-globin chains. Novel approaches are being developed to correct the resulting α/β-globin chain imbalance, in an effort to move beyond the palliative management of this disease and the complications of its treatment (e.g.

View Article and Find Full Text PDF

β-globin gene disorders are the most prevalent inherited diseases worldwide and result from abnormal β-globin synthesis or structure. Novel therapeutic approaches are being developed in an effort to move beyond palliative management. Gene therapy, by ex vivo lentiviral transfer of a therapeutic β-globin gene derivative (β(AT87Q)-globin) to hematopoietic stem cells, driven by cis-regulatory elements that confer high, erythroid-specific expression, has been evaluated in human clinical trials over the past 8 years.

View Article and Find Full Text PDF
Article Synopsis
  • RNA delivery is a promising method for temporary gene expression in both research and therapies, but current methods need improved efficiency for primary cells and in vivo applications.
  • A new dimerization-independent MS2-driven RNA packaging system using MS2-Coat-retrovirus chimeras was developed to enhance retroviral RNA transfer and enable effective packaging of various RNAs.
  • This innovative approach successfully allowed for gene expression in mouse liver and editing in muscle cells, as well as activating bone-marrow stem cell differentiation, making these chimeric particles useful for multiple biological applications.
View Article and Find Full Text PDF

A previously published clinical trial demonstrated the benefit of autologous CD34(+) cells transduced with a selfinactivating lentiviral vector (HPV569) containing an engineered β-globin gene (β(A-T87Q)-globin) in a subject with β thalassemia major. This vector has been modified to increase transduction efficacy without compromising safety. In vitro analyses indicated that the changes resulted in both increased vector titers (3 to 4 fold) and increased transduction efficacy (2 to 3 fold).

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the mechanisms underlying ineffective erythropoiesis in β-thalassemia and finds that RAP-011, a specific ligand trap, can improve anemia and limit iron overload in affected mice.
  • Increased levels of growth differentiation factor 11 (GDF11) in thalassemic subjects contribute to oxidative stress and hinder proper red blood cell maturation, suggesting its involvement in the disease.
  • Targeting GDF11 could enhance the differentiation of red blood cells by inducing the death of immature erythroblasts, indicating that ActRIIA ligand traps might offer a new therapeutic approach for managing β-thalassemia.
View Article and Find Full Text PDF

A patient with β(E)/β(0) -thalassemia major was converted to transfusion-independence 4.5 years ago by lentiviral gene transfer in hematopoietic stem cells while showing a myeloid-biased cell clone. Induced pluripotent stem cells (iPSCs) are a potential alternative source of hematopoietic stem cells.

View Article and Find Full Text PDF

Our understanding of system dynamics of mixed cell populations in whole organisms has benefited from the advent of individual cell marking by nonarrayed DNA barcodes subsequently analyzed by high-throughput DNA sequencing. However, key limitations include statistical biases compromising quantification and the lack of applicability to deconvolute individual cell fate in vivo after pooling single cells differentially exposed to different conditions ex vivo. Here, we have derived an arrayed lentiviral library of DNA barcodes and obtained a proof-of-concept of its resolving capacity by quantifying hematopoietic regeneration after engraftment of mice with genetically modified autologous cells.

View Article and Find Full Text PDF

High-level production of β-globin, γ-globin, or therapeutic mutant globins in the RBC lineage by hematopoietic stem cell gene therapy ameliorates or cures the hemoglobinopathies sickle cell disease and beta thalassemia, which are major causes of morbidity and mortality worldwide. Considerable efforts have been made in the last 2 decades in devising suitable gene-transfer vectors and protocols to achieve this goal. Five years ago, the first β(E)/β(0)-thalassemia major (transfusion-dependent) patient was treated by globin lentiviral gene therapy without injection of backup cells.

View Article and Find Full Text PDF

Patients with β-thalassemia major require lifelong transfusions and iron chelation, regardless of the type of causative mutations (e.g., β⁰, β(E)/β⁰).

View Article and Find Full Text PDF

A challenge for gene therapy of genetic diseases is to maintain corrected cell populations in subjects undergoing transplantation in cases in which the corrected cells do not have intrinsic selective advantage over nontransduced cells. For inherited hematopoietic disorders, limitations include inefficient transduction of stem cell pools, the requirement for toxic myelosuppression, and a lack of optimal methods for cell selection after transduction. Here, we have designed a lentiviral vector that encodes human β-globin and a truncated erythropoietin receptor, both under erythroid-specific transcriptional control.

View Article and Find Full Text PDF

A lentiviral vector encoding β-globin flanked by insulator elements has been used to treat β-thalassemia (β-Thal) successfully in one human subject. However, a clonal expansion was observed after integration in the HMGA2 locus, raising the question of how commonly lentiviral integration would be associated with possible insertional activation. Here, we report correcting β-Thal in a murine model using the same vector and a busulfan-conditioning regimen, allowing us to investigate efficacy and clonal evolution at 9.

View Article and Find Full Text PDF

The understanding of the hierarchical organization of the human hematopoietic system is of major biologic and clinical significance. The validity of the conventional model in which hematopoiesis is solely maintained by a pool of multipotent long-term hematopoietic stem cells (LT-HSCs) has been recently challenged by several mouse studies. These new data point to the existence of a heterogeneous stem cell population that consists of distinct subsets of LT-HSCs, which include stem cells biased toward lineage-specific differentiation programs.

View Article and Find Full Text PDF