Publications by authors named "Emmanuel Osei-Twum"

In this paper, we present a detailed evaluation of changes in the oil residue in soil following a spill using weathering indices obtained from analytical instruments such as UV, IR, GC, and H NMR, and chemometrics based on the time of spill in the Niger Delta region of Nigeria. UV, IR and H NMR spectra of eight (8) oil residue samples were analyzed. The PCA of the UV and IR spectrometric index showed that the first two PCs accounted for 87 and 71% of the variance of the index, respectively.

View Article and Find Full Text PDF

The reaction of 2-{[2-(1H-imidazol-4-yl)-ethylimino]-methyl}-phenol (L1), 2,4-di-tert-butyl-6-{[2-(1H-imidazol-4-yl)-ethylimino]-methyl}-phenol (L2) or 4-tert-butyl-2-{[2-(1H-imidazol-4-yl)-ethylimino]-methyl}-phenol (L3) with iron(ii) precursors produced either iron(ii) or iron(iii) complexes, depending on the nature of the anions in the iron(ii) precursor and the ligand. When the anion is chloride and the ligand L1, the product is [(L1)2Fe][FeCl4] (1), but when the anion is triflate (OTf(-)) and the ligand is L2, the product is [(L2)2Fe][OTf]2 (2). With iron(ii) halides and tert-butyl groups on the phenoxy ligands L2 and L3, the iron(iii) complexes [(L2)FeX2] {where X = Cl (3), Br (4) and I = (5)} and [(L3)FeCl2] (6) were formed.

View Article and Find Full Text PDF

The mass spectral behavior of a number of organometallic complexes containing the Group 10 metals Ni, Pd, and Pt, together with various thiolate ligands were studied. For Pd, two main types of complexes, differing by the substituents on the phosphorus atom were studied. Types I and II were substituted with bis(diphenylphosphino)ferrocene and bis(diisopropylphosphino)ferrocene ligands, respectively.

View Article and Find Full Text PDF