Publications by authors named "Emmanuel O Ogunkunle"

D-amino acids (D-AAs) are important signaling molecules due to their ability to bind ionotropic N-methyl-D-aspartate receptors. D-serine (D-Ser), D-alanine (D-Ala), and D-aspartate (D-Asp) have been found individually in the endocrine portion of the pancreas, the islets of Langerhans, and/or their secretions. However, there has been no report of a comprehensive assessment of D-AAs in islet secretions.

View Article and Find Full Text PDF

Islets of Langerhans release peptide hormones in controlled amounts and patterns to ensure proper maintenance of blood glucose levels. The overall release of the hormones is shaped by external factors and by autocrine and paracrine interactions occurring within the islets. To better understand what controls the secretion of islet-secreted peptides, and how these processes go awry in diabetes, methods to monitor the release of multiple hormones simultaneously are needed.

View Article and Find Full Text PDF

Islets of Langerhans are the endocrine tissue within the pancreas that secrete hormones for maintenance of blood glucose homeostasis. A variety of small molecules including classical neurotransmitters are also released from islets. While the roles of most of these small molecules are unknown, some have been hypothesized to play a critical role in islet physiology.

View Article and Find Full Text PDF

Temporal lobe epilepsy (TLE) is the most common type of drug-resistant epilepsy in adults, with an unknown etiology. A hallmark of TLE is the characteristic loss of layer 3 neurons in the medial entorhinal area (MEA) that underlies seizure development. One approach to intervention is preventing loss of these neurons through better understanding of underlying pathophysiological mechanisms.

View Article and Find Full Text PDF