There is a recent unparalleled increase in demand for rice in sub-Saharan Africa, yet its production is affected by blast disease. Characterization of blast resistance in adapted African rice cultivars can provide important information to guide growers and rice breeders. We used molecular markers for known blast resistance genes ( genes; = 21) to group African rice genotypes ( = 240) into similarity clusters.
View Article and Find Full Text PDFRice is a key food security crop in Africa. The importance of rice has led to increasing country-specific, regional, and multinational efforts to develop germplasm and policy initiatives to boost production for a more food-secure continent. Currently, this critically important cereal crop is predominantly cultivated by small-scale farmers under suboptimal conditions in most parts of sub-Saharan Africa (SSA).
View Article and Find Full Text PDFUnderstanding the genetic diversity of rice germplasm is important for the sustainable use of genetic materials in rice breeding and production. Africa is rich in rice genetic resources that can be utilized to boost rice productivity on the continent. A major constraint to rice production in Africa is rice blast, caused by the hemibiotrophic fungal pathogen Magnaporthe oryzae.
View Article and Find Full Text PDFRice blast disease is emerging as a major constraint to rice production in Africa. Although a traditional gene-tagging strategy using biparental crosses can effectively identify resistance (R) genes or quantitative trait loci (QTL) against Magnaporthe oryzae, the mapping procedure required is time consuming and requires many populations to investigate the genetics of resistance. In this report, we conducted a genome-wide association study (GWAS) to rapidly map rice genes conferring resistance against eight M.
View Article and Find Full Text PDF