Publications by authors named "Emmanuel Koudoumas"

In order to enhance the mechanical performance of three-dimensional (3D) printed structures fabricated via commercially available fused filament fabrication (FFF) 3D printers, novel nanocomposite filaments were produced herein following a melt mixing process, and further 3D printed and characterized. Titanium Dioxide (TiO) and Antimony (Sb) doped Tin Oxide (SnO) nanoparticles (NPs), hereafter denoted as ATO, were selected as fillers for a polymeric acrylonitrile butadiene styrene (ABS) thermoplastic matrix at various weight % (wt%) concentrations. Tensile and flexural test specimens were 3D printed, according to international standards.

View Article and Find Full Text PDF

In order to expand the mechanical and physical capabilities of 3D-printed structures fabricated via commercially available 3D printers, nanocomposite and microcomposite filaments were produced via melt extrusion, 3D-printed and evaluated. The scope of this work is to fabricate physically and mechanically improved nanocomposites or microcomposites for direct commercial or industrial implementation while enriching the existing literature with the methodology applied. Zinc Oxide nanoparticles (ZnO nano) and Zinc Oxide micro-sized particles (ZnO micro) were dispersed, in various concentrations, in Acrylonitrile Butadiene Styrene (ABS) matrices and printable filament of ~1.

View Article and Find Full Text PDF

Enhancement of photoconversion efficiency (PCE) and stability in bulk heterojunction (BHJ) plasmonic organic photovoltaic devices (OPVs) incorporating graphene oxide (GO) thin films as the hole transport layer (HTL) and surfactant free Au nanoparticles (NPs) between the GO HTL and the photoactive layers is demonstrated. In particular the plasmonic GO-based devices exhibited a performance enhancement by 30% compared to the devices using the traditional PEDOT:PSS layer. Likewise, they preserved 50% of their initial PCE after 45 h of continuous illumination, contrary to the PEDOT:PSS-based ones that die after 20 h.

View Article and Find Full Text PDF

A solution-processed graphene content was synthesized by treatment of graphite oxide (GO) with phenyl isothiocyanate (PITC) by taking advantage of the functional carboxyl groups of graphene oxide. The GO was prepared by the oxidation of natural graphite powder and was expanded by ultrasonication in order to exfoliate single or/and few-layered graphene oxide sheets. The functionalized graphene oxide, GO-PITC, can be dispersed within poly-(3-hexylthiophene) (P3HT) and can be utilized as the electron acceptor in bulk heterojunction polymer photovoltaic cells.

View Article and Find Full Text PDF