Given the recent increase in demand for electricity, it is necessary for renewable energy sources (RESs) to be widely integrated into power networks, with the two most commonly adopted alternatives being solar and wind power. Nonetheless, there is a significant amount of variation in wind speed and solar irradiance, on both a seasonal and a daily basis, an issue that, in turn, causes a large degree of variation in the amount of solar and wind energy produced. Therefore, RES technology integration into electricity networks is challenging.
View Article and Find Full Text PDFModern fault ride-through (FRT) standards in many countries require distributed generators to remain connected for a specified period during the fault by providing reactive current, to support voltage and prevent a massive renewable outage. As a result, short-circuit current is not constant, but it varies depending on the current and disconnection order of distributed generators (DGs). This time-varying short-circuit current complicates the estimation of the time it will take for an overcurrent relay or fuse to trip.
View Article and Find Full Text PDFCurrently, energy efficiency and saving in production engineering, including Material Extrusion (MEX) Additive Manufacturing, are of key importance to ensure process sustainability and cost-effectiveness. The functionality of parts made with MEX 3D-printing remains solid, especially for expensive high-performance polymers, for biomedical, automotive, and aerospace industries. Herein, the energy and tensile strength metrics are investigated over three key process control parameters (Nozzle Temperature, Layer Thickness, and Printing Speed), with the aid of laboratory-scale PEEK filaments fabricated with melt extrusion.
View Article and Find Full Text PDFProcess sustainability vs. mechanical strength is a strong market-driven claim in Material Extrusion (MEX) Additive Manufacturing (AM). Especially for the most popular polymer, Polylactic Acid (PLA), the concurrent achievement of these opposing goals may become a puzzle, especially since MEX 3D-printing offers a variety of process parameters.
View Article and Find Full Text PDFThe energy efficiency of material extrusion additive manufacturing has a significant impact on the economics and environmental footprint of the process. Control parameters that ensure 3D-printed functional products of premium quality and mechanical strength are an established market-driven requirement. To accomplish multiple objectives is challenging, especially for multi-purpose industrial polymers, such as the Poly[methyl methacrylate].
View Article and Find Full Text PDFResearch efforts have been focused on developing multivalent ion batteries because they hold great promise and could be a major advancement in energy storage, since two or three times more charge per ion can be transferred as compared with lithium. However, their application is limited because of the lack of suitable cathode materials to reversibly intercalate multivalent ions. From that perspective, vanadium pentoxide is a promising cathode material because of its low toxicity, ease of synthesis, and layered structure, which provides huge possibilities for the development of energy storage devices.
View Article and Find Full Text PDF