Publications by authors named "Emmanuel Jacquot"

The deciphering of the epidemiology of a plant virus has long been focused on the study of interactions between partners of one pathosystem. However, plants are exposed to numerous viruses which lead to frequent co-infection scenarios. This can change characteristics of virus-vector-host interactions and could impact the epidemiology of viral diseases.

View Article and Find Full Text PDF

Neonicotinoids are widely used to protect fields against aphid-borne viral diseases. The recent ban of these chemical compounds in the European Union has strongly impacted rapeseed and sugar beet growing practices. The poor sustainability of other insecticide families and the low efficiency of prophylactic methods to control aphid populations and pathogen introduction strengthen the need to characterize the efficiency of new plant protection products targeting aphids.

View Article and Find Full Text PDF

Turnip yellows virus (TuYV), transmitted by , can be controlled in rapeseed fields by insecticide treatments. However, the recent ban of the neonicotinoids together with the description of pyrethrinoid-resistant aphids has weakened insecticide-based control methods available to farmers. Since the deployment of insecticides in the 1980s, few research efforts were made to breed for rapeseed cultivars resistant to aphid-borne viral diseases.

View Article and Find Full Text PDF

Barley/cereal yellow dwarf viruses (YDVs) cause yellow dwarf disease (YDD), which is a continuous risk to cereals production worldwide. These viruses cause leaf yellowing and stunting, resulting in yield reductions of up to 80%. YDVs have been a consistent but low-level problem in European cereal cultivation for the last three decades, mostly due to the availability of several effective insecticides (largely pyrethroids and more recently neonicotinoids) against aphid vectors.

View Article and Find Full Text PDF

Wheat dwarf virus, transmitted by the leafhopper in a persistent, non-propagative manner, infects numerous species from the family. Data associated with wheat dwarf virus (WDV) suggest that some isolates preferentially infect wheat while other preferentially infect barley. This allowed to define the wheat strain and the barley strain.

View Article and Find Full Text PDF

Epidemiological models are increasingly used to predict epidemics and improve management strategies. However, they rarely consider landscape characteristics although such characteristics can influence the epidemic dynamics and, thus, the effectiveness of disease management strategies. Here, we present a generic in silico approach which assesses the influence of landscape aggregation on the costs associated with an epidemic and on improved management strategies.

View Article and Find Full Text PDF

Many recessive resistances against potyviruses are mediated by eukaryotic translation initiation factor 4E (eIF4E). In tobacco, the va resistance gene commonly used to control Potato virus Y (PVY) corresponds to a large deletion affecting the eIF4E-1 gene on chromosome 21. Here, we compared the resistance durability conferred by various types of mutations affecting eIF4E-1 (deletions of various sizes, frameshift or nonsense mutations).

View Article and Find Full Text PDF

Improvement of management strategies of epidemics is often hampered by constraints on experiments at large spatiotemporal scales. A promising approach consists of modeling the biological epidemic process and human interventions, which both impact disease spread. However, few methods enable the simultaneous optimization of the numerous parameters of sophisticated control strategies.

View Article and Find Full Text PDF

Characterising the spatio-temporal dynamics of pathogens in natura is key to ensuring their efficient prevention and control. However, it is notoriously difficult to estimate dispersal parameters at scales that are relevant to real epidemics. Epidemiological surveys can provide informative data, but parameter estimation can be hampered when the timing of the epidemiological events is uncertain, and in the presence of interactions between disease spread, surveillance, and control.

View Article and Find Full Text PDF

Identifying the key factors underlying the spread of a disease is an essential but challenging prerequisite to design management strategies. To tackle this issue, we propose an approach based on sensitivity analyses of a spatiotemporal stochastic model simulating the spread of a plant epidemic. This work is motivated by the spread of sharka, caused by , in a real landscape.

View Article and Find Full Text PDF

During the past decade, knowledge of pathogen life history has greatly benefited from the advent and development of molecular epidemiology. This branch of epidemiology uses information on pathogen variation at the molecular level to gain insights into a pathogen's niche and evolution and to characterize pathogen dispersal within and between host populations. Here, we review molecular epidemiology approaches that have been developed to trace plant virus dispersal in landscapes.

View Article and Find Full Text PDF

The Wheat dwarf virus, the causal agent of the wheat dwarf disease, is transmitted by leafhoppers from the genus Psammotettix and currently the main protection strategy is based on the use of insecticide treatments. Sustainable management strategies for insect vectors should include methods that are targeted to disrupt reproductive behavior and here we investigated the mating behavior of Psammotettix alineus (Dahlbom 1850) in order to determine the role of vibrational signals in intra-specific communication and pair formation. Both genders spontaneously emit species- and sex-specific calling songs that consisted of regularly repeated pulse trains and differ primarily in pulse train duration and pulse repetition time.

View Article and Find Full Text PDF

The relative durations of the incubation period (the time between inoculation and symptom expression) and of the latent period (the time between inoculation and infectiousness of the host) are poorly documented for plant diseases. However, the extent of asynchrony between the ends of these two periods (i.e.

View Article and Find Full Text PDF

The ability to induce the potato tuber necrosis ringspot disease (PTNRD) is a property shared by PVY isolates belonging to different groups (e.g. PVY(N) and PVY(O)) and variants (e.

View Article and Find Full Text PDF

Many plant epidemics that cause major economic losses cannot be controlled with pesticides. Among them, sharka epidemics severely affect prunus trees worldwide. Its causal agent, Plum pox virus (PPV; genus Potyvirus), has been classified as a quarantine pathogen in numerous countries.

View Article and Find Full Text PDF

This chapter describes an efficient approach that combines quality and yield extraction of viral nucleic acids from plants containing high levels of secondary metabolites and a sequence-independent amplification procedure for both the inventory of known plant viruses and the discovery of unknown ones. This approach turns out to be a useful tool for assessing the virome (the genome of all the viruses that inhabit a particular organism) of plants of interest. We here show that this approach enables the identification of a novel Potyvirus member within a single plant already known to be infected by two other Potyvirus species.

View Article and Find Full Text PDF

Numerous molecular-based detection protocols include an amplification step of the targeted nucleic acids. This step is important to reach the expected sensitive detection of pathogens in diagnostic procedures. Amplifications of nucleic acid sequences are generally performed, in the presence of appropriate primers, using thermocyclers.

View Article and Find Full Text PDF

The multiplex SNaPshot and the capillary electrophoresis-single-strand conformation polymorphism (CE-SSCP) procedures are here used for rapid and high-throughput description of the molecular variability of viral populations. Both approaches are based on (1) standard amplification of genomic sequence(s), (2) labeled primers or labeled single-stranded DNA, and (3) migration of fluorescent-labeled molecules in capillary electrophoresis system. The SNaPshot technology was used to describe the diversity of 20 targeted single nucleotide polymorphisms (SNPs) selected from alignment of viral genomic sequences retrieved from public database.

View Article and Find Full Text PDF

Potato virus Y (PVY) is an economically important plant virus that infects Solanaceous crops such as tobacco and potato. To date, studies into the localization and movement of PVY in plants have been limited to detection of viral RNA or proteins ex vivo. Here, a PVY N605 isolate was tagged with green fluorescent protein (GFP), characterized and used for in vivo tracking.

View Article and Find Full Text PDF

Surface plasmon resonance (SPR)-based biosensors have been widely utilized for measuring interactions of a variety of molecules. Fewer examples include higher biological entities such as bacteria and viruses, and even fewer deal with plant viruses. Here, we describe the optimization of an SPR sensor chip for evaluation of the interaction of the economically relevant filamentous Potato virus Y (PVY) with monoclonal antibodies.

View Article and Find Full Text PDF

Potato virus Y (PVY) is the most important virus infecting potato (Solanum tuberosum), causing potato tuber necrotic ringspot disease (PTNRD), with a great impact on seed potato production. Numerous PVY strain groups with different pathogenicity and economical impact are distributed worldwide. Tools for accurate and reliable detection and discrimination of PVY strain groups are therefore essential for successful disease management.

View Article and Find Full Text PDF

Potato virus Y (PVY) is an important plant pathogen with a wide host range that includes, among others, potato, tobacco, tomato and pepper. The coat protein (CP) of PVY has been commonly used in phylogenetic studies for strain classification. In this study, we used a pool of 292 CP sequences from isolates collected worldwide.

View Article and Find Full Text PDF

The success of parasitic life lies in an optimal exploitation of the host to satisfy key functions directly involved in reproductive fitness. Resource availability generally decreases over time with host mortality, but also during multiple infections, where different strains of parasite share host resources. During multiple infections, the number of parasite strains and their genetic relatedness are known to influence their reproductive rates.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session7qvm63mjsr8vjmjki3uoqak61lge72nk): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once