With the increasing demand for sustainable biotechnologies, mixed consortia containing a phototrophic microbe and heterotrophic partner species are being explored as a method for solar-driven bioproduction. One approach involves the use of CO2-fixing cyanobacteria that secrete organic carbon to support the metabolism of a co-cultivated heterotroph, which in turn transforms the carbon into higher-value goods or services. In this protocol, a technical description to assist the experimentalist in the establishment of a co-culture combining a sucrose-secreting cyanobacterial strain with a fungal partner(s), as represented by model yeast species, is provided.
View Article and Find Full Text PDFMicrobial communities have vital roles in systems essential to human health and agriculture, such as gut and soil microbiomes, and there is growing interest in engineering designer consortia for applications in biotechnology (e.g., personalized probiotics, bioproduction of high-value products, biosensing).
View Article and Find Full Text PDFThere has been substantial recent interest in the promise of sustainable, light-driven bioproduction using cyanobacteria, including developing efforts for microbial bioproduction using mixed autotroph/heterotroph communities, which could provide useful properties, such as division of metabolic labor. However, building stable mixed-species communities of sufficient productivity remains a challenge, partly due to the lack of strategies for synchronizing and coordinating biological activities across different species. To address this obstacle, we developed an inter-species communication system using quorum sensing (QS) modules derived from well-studied pathways in heterotrophic microbes.
View Article and Find Full Text PDFA herbicide and antibiotic-resistant microalgal strain, isolated from a eutrophic site at Giofyros river (Heraklion, Crete, Greece) was extensively characterized. In the presence of relatively high concentrations of common photosynthesis inhibitors (DCMU and atrazine), as well as various antibiotics (spectinomycin, kanamycin, and chloramphenicol), the green microalga was able to increase its biomass in approximately equal levels compared to the control. Despite the high concentrations of the inhibitors, photosynthetic efficiency and chlorophyll a amount per dry cell biomass were comparable to those of control cultures in almost all cases.
View Article and Find Full Text PDF