We explored the potential of different nanoparticles (TiO, CaCO, and AlO), considering their pure form and modified with cinnamon essential oil (CEO). These materials were characterized using various techniques, including FTIR spectroscopy, XRD analysis, TGA, and SEM. The interaction between CEO and nanoparticles changed depending on the nanoparticle type.
View Article and Find Full Text PDFThis research presents a methodology for the design and optimization of 3D printed parts with material extrusion (MEX) technology with three different commercial materials: PLA, ABS and N + CF (PA12) subjected to tensile and fatigue stresses, which included three stages: pretreatment, design of experiments and sequential optimization by statistical modeling. In the pretreatment stage, mainly the printing control factors (inner layer and contour height, printing speed, extrusion temperature, nozzle, infill arrangement and printing orientation) were determined; then, factors to optimize tensile strength as a function of printing pattern (linear, 3D, hexagonal), infill percentage (33%, 66%, 100°) and printing orientation (+45°/-45°, 0°/90°) were evaluated. Fatigue analysis was performed as a function of impression orientation using 100% infill, linear impression pattern, 5 Hz and a load range between 90 and 50% UTS.
View Article and Find Full Text PDFAntioxidants (Basel)
May 2023
One of the main causes of food spoilage is the lipid oxidation of its components, which generates the loss of nutrients and color, together with the invasion of pathogenic microorganisms. In order to minimize these effects, active packaging has played an important role in preservation in recent years. Therefore, in the present study, an active packaging film was developed using polylactic acid (PLA) and silicon dioxide (SiO) nanoparticles (NPs) (0.
View Article and Find Full Text PDF