Leishmaniasis affects more than 12 million humans globally and a further 1 billion people are at risk in leishmaniasis endemic areas. The lack of a vaccine for leishmaniasis coupled with the limitations of existing anti-leishmanial therapies prompted this study. Cheminformatic techniques are widely used in screening large libraries of compounds, studying protein-ligand interactions, analysing pharmacokinetic properties, and designing new drug molecules with great speed, accuracy, and precision.
View Article and Find Full Text PDFThe development of novel medicines to treat autoimmune diseases and SARS-CoV-2 main protease (Mpro), a virus that can cause both acute and chronic illnesses, is an ongoing necessity for the global community. The primary objective of this research is to use CoMFA methods to evaluate the quantitative structure-activity relationship (QSAR) of a select group of chemicals concerning autoimmune illnesses. By performing a molecular docking analysis, we may verify previously observed tendencies and gain insight into how receptors and ligands interact.
View Article and Find Full Text PDFBackground: In seek of potent and non-toxic iminoguanidine derivatives formerly assessed as active Pseudomonas aeruginosa inhibitors, a combined mathematical approach of quantitative structure-activity relationship (QSAR), homology modeling, docking simulation, ADMET, and molecular dynamics simulations were executed on iminoguanidine derivatives.
Results: The QSAR method was employed to statistically analyze the structure-activity relationships (SAR) and had conceded good statistical significance for eminent predictive model; (GA-MLR: Q = 0.8027; = 0.