Publications by authors named "Emmanuel Flahaut"

The development of ISE-based sensors for the analysis of nitrates in liquid phase is described in this work. Focusing on the tetradodecylammonium nitrate (TDDAN) ion exchanger as well as on fluoropolysiloxane (FPSX) polymer-based layers, electrodeposited matrixes containing double-walled carbon nanotubes (DWCNTs), embedded in either polyethylenedioxythiophene (PEDOT) or polypyrrole (PPy) polymers, ensured improved ion-to-electron transducing layers for NO detection. Thus, FPSX-based pNO-ElecCell microsensors exhibited good detection properties (sensitivity up to 55 mV/pX for NO values ranging from 1 to 5) and acceptable selectivity in the presence of the main interferent anions (Cl, HCO, and SO).

View Article and Find Full Text PDF

The increase in industrial production of multi-walled carbon nanotubes (MWCNTs) raises concerns about their potential adverse effects associated to environmental releases, especially in aquatic environments where they are likely to accumulate. This study focuses on the environmental impact of MWCNTs, specifically on a benthic freshwater diatom (Nitzschia linearis), which plays a major role in the primary production of water bodies. The obtained results indicate that exposure to MWCNTs in the presence of natural organic matter (NOM) inhibits diatom's growth in a dose-dependent manner after 72 h of exposure.

View Article and Find Full Text PDF

Recent advancements in materials science have shed light on the potential of exploring hierarchical assemblies of molecules on surfaces, driven by both fundamental and applicative challenges. This field encompasses diverse areas including molecular storage, drug delivery, catalysis, and nanoscale chemical reactions. In this context, the utilization of nanotube templates (NTs) has emerged as promising platforms for achieving advanced one-dimensional (1D) molecular assemblies.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) are increasingly being used in industrial applications, but their toxicological data in animals and humans are still sparse. To assess the toxicological dose-response of CNTs and to evaluate their pulmonary biopersistence, their quantification in tissues, especially lungs, is crucial. There are currently no reference methods or reference materials for low levels of CNTs in organic matter.

View Article and Find Full Text PDF

Graphene-based conductive inks offer attractive possibilities in many printing technology applications. Often, these inks contain a mixture of compounds, such as solvents and stabilizers. For the safe(r) and sustainable use of such materials in products, potentially hazardous components must be identified and considered in the design stage.

View Article and Find Full Text PDF

Two-dimensional (2D) materials have attracted tremendous interest ever since the isolation of atomically thin sheets of graphene in 2004 due to the specific and versatile properties of these materials. However, the increasing production and use of 2D materials necessitate a thorough evaluation of the potential impact on human health and the environment. Furthermore, harmonized test protocols are needed with which to assess the safety of 2D materials.

View Article and Find Full Text PDF
Article Synopsis
  • Skin electroporation uses Pulsed Electric Fields (PEFs) to temporarily disrupt the skin barrier, enhancing non-invasive drug delivery compared to traditional methods like injections.
  • A drug delivery system has been developed that combines hydrogels as drug reservoirs and electrodes for applying electrical pulses on the skin.
  • The study employed a mouse skin model and revealed that PEFs at specific voltages increased drug uptake and enhanced skin conductivity, demonstrating two key electroporation phases: initial transport in skin lipids at 100 V and cell permeabilization at 300 V.
View Article and Find Full Text PDF

Boron nitride (BN) nanomaterials have drawn a lot of interest in the material science community. However, extensive research is still needed to thoroughly analyze their safety profiles. Herein, we investigated the pulmonary impact and clearance of two-dimensional hexagonal boron nitride (-BN) nanosheets and boron nitride nanotubes (BNNTs) in mice.

View Article and Find Full Text PDF

Oxidized carbon nanotubes obtained by catalytic chemical vapor deposition were filled with an aqueous solution of nano-energetic materials using a very simple impregnation method. The work compares different energetic materials but focuses especially on an inorganic compound belonging to the Werner complexes, [Co(NH)][NO]. Our results show a large increase in released energy upon heating, which we demonstrate to be related to the confinement of the nano-energetic material either directly by filling of the inner channel of carbon nanotubes or to insertion in the triangular channels between adjacent nanotubes when they form bundles.

View Article and Find Full Text PDF

Due to their properties, graphene-based nanomaterials (GBMs) are triggering a great interest leading to an increase of their global production and use in new applications. As a consequence, their release into the environment is expected to increase in the next years. When considering the current knowledge in the evaluation of GBMs ecotoxic potential, studies aiming to evaluate the hazard associated to these nanomaterials towards marine species and particularly considering potential interactions with other environmental pollutants such as metals are scarce.

View Article and Find Full Text PDF

Research on graphene-related two-dimensional (2D) materials (GR2Ms) in recent years is strongly moving from academia to industrial sectors with many new developed products and devices on the market. Characterization and quality control of the GR2Ms and their properties are critical for growing industrial translation, which requires the development of appropriate and reliable analytical methods. These challenges are recognized by International Organization for Standardization (ISO 229) and International Electrotechnical Commission (IEC 113) committees to facilitate the development of these methods and standards which are currently in progress.

View Article and Find Full Text PDF

Thanks to their biocompatibility and high cargo capability, graphene-based materials (GRMs) might represent an ideal brain delivery system. The capability of GRMs to reach the brain has mainly been investigated and has highlighted some controversy. Herein, we employed two BBB models of increasing complexity to investigate the bionano interactions with graphene oxide (GO) and few-layer graphene (FLG): a 2D murine Transwell model, followed by a 3D human multicellular assembloid, to mimic the complexity of the architecture and intercellular crosstalk.

View Article and Find Full Text PDF

Supramolecular hydrogels obtained from the self-organization of simple peptides, such as tripeptides, are attractive soft materials. Their viscoelastic properties can be enhanced through the inclusion of carbon nanomaterials (CNMs), although their presence can also hinder self-assembly, thus requiring investigation of the compatibility of CNMs with peptide supramolecular organization. In this work, we compared single-walled carbon nanotubes (SWCNTs) and double-walled carbon nanotubes (DWCNTs) as nanostructured additives for a tripeptide hydrogel, revealing superior performance by the latter.

View Article and Find Full Text PDF

Hydrogels, soft 3D materials of cross-linked hydrophilic polymer chains with a high water content, have found numerous applications in biomedicine because of their similarity to native tissue, biocompatibility and tuneable properties. In general, hydrogels are poor conductors of electric current, due to the insulating nature of commonly-used hydrophilic polymer chains. A number of biomedical applications require or benefit from an increased electrical conductivity.

View Article and Find Full Text PDF

Despite the fast-growing use and production of graphene-based nanomaterials (GBMs), data concerning their effects on freshwater benthic macroinvertebrates are scarce. This study aims to investigate the effects of graphene oxide (GO) on the midge . Mortality, growth inhibition, development delay and teratogenicity, assessed using mentum deformity analysis, were investigated after a 7-day static exposure of the first instar larvae under controlled conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Graphene oxide (GO), a type of graphene-based nanomaterial, has unique properties but poses environmental risks when released into aquatic ecosystems, necessitating ecotoxicological evaluations.
  • The study examines the effects of GO exposure on X. laevis tadpoles, finding that it leads to growth inhibition, genotoxicity, and significant changes in gut microbiota composition.
  • Specifically, GO exposure alters the balance of bacterial communities in the gut, which may contribute to the observed physiological impairments, highlighting the importance of gut microbiota in understanding the effects of nanomaterials on amphibians.
View Article and Find Full Text PDF

The coaxial stacking of two single-wall carbon nanotubes (SWCNTs) into a double-wall carbon nanotube (DWCNT), forming a so-called one-dimensional van der Waals structure, leads to synergetic effects that dramatically affect the optical and electronic properties of both layers. In this work, we explore these effects in purified DWCNT samples by combining absorption, wavelength-dependent infrared fluorescence-excitation (PLE), and wavelength-dependent resonant Raman scattering (RRS) spectroscopy. Purified DWCNTs are obtained by careful solubilization that strictly avoids ultrasonication or by electronic-type sorting, both followed by a density gradient ultracentrifugation to remove unwanted SWCNTs that could obscure the DWCNT characterization.

View Article and Find Full Text PDF

Agricultural soils are exposed to multiple contaminants through the use of agrochemicals or sewage sludge, introducing metals, nanomaterials and others. Among nanomaterials, carbon nanotubes (CNTs) are known for their large surface area and adsorption capabilities, possibly modifying other element behavior. However, to date, very little is known about the impacts of such interactions in agrosystems.

View Article and Find Full Text PDF

In this study, we report a flexible implantable 4-channel microelectrode probe coated with highly porous and robust nanocomposite of poly (3,4-ethylenedioxythiophene) (PEDOT) and carbon nanofiber (CNF) as a solid doping template for high-performance neuronal recording and stimulation. A simple yet well-controlled deposition strategy was developed electrochemical polymerization technique to create a porous network of PEDOT and CNFs on a flexible 4-channel gold microelectrode probe. Different morphological and electrochemical characterizations showed that they exhibit remarkable and superior electrochemical properties, yielding microelectrodes combining high surface area, low impedance (16.

View Article and Find Full Text PDF

Nanostructured β-FeSi and β-FeCoSi specimens with a relative density of up to 95% were synthesized by combining a top-down approach and spark plasma sintering. The thermoelectric properties of a 50 nm crystallite size β-FeSi sample were compared to those of an annealed one, and for the former a strong decrease in lattice thermal conductivity and an upshift of the maximum Seebeck's coefficient were shown, resulting in an improvement of the figure of merit by a factor of 1.7 at 670 K.

View Article and Find Full Text PDF

Delivery of hydrophilic molecules through the skin using electroporation is a promising alternative approach to intradermal injection. Recently, we developed a two-in-one electrode/reservoir material composed of carbon nanotubes and agarose hydrogel. In this work, we evaluated the potential of the device to achieve non-invasive transdermal drug delivery using skin electroporation.

View Article and Find Full Text PDF

Objective: Solid composite propellants combustion, in aerospace and defense fields, can lead to complex aerosols emission containing high concentrations of alumina nanoparticles (AlO NPs) and hydrogen chloride gas (HCl). Exposure to these mixtures by inhalation is thus possible but literature data toward their pulmonary toxicity are missing. To specify hazards resulting from these combustion aerosols, a pilot study was implemented.

View Article and Find Full Text PDF

The increasing engineering of biomedical devices and the design of drug-delivery platforms enriched by graphene-based components demand careful investigations of the impact of graphene-related materials (GRMs) on the nervous system. In addition, the enhanced diffusion of GRM-based products and technologies that might favor the dispersion in the environment of GRMs nanoparticles urgently requires the potential neurotoxicity of these compounds to be addressed. One of the challenges in providing definite evidence supporting the harmful or safe use of GRMs is addressing the variety of this family of materials, with GRMs differing for size and chemistry.

View Article and Find Full Text PDF

New approaches for the engineering of the 3D microstructure, pore modality, and chemical functionality of hierarchically porous nanocarbon assemblies are key to develop the next generation of functional aerogel and membrane materials. Here, interfacially driven assembly of carbon nanotubes (CNT) is exploited to fabricate structurally directed aerogels with highly controlled internal architectures, composed of pseudo-monolayer, CNT microcages. CNT Pickering emulsions enable engineering at fundamentally different length scales, whereby the microporosity, mesoporosity, and macroporosity are decoupled and individually controlled through CNT type, CNT number density, and process energy, respectively.

View Article and Find Full Text PDF

The interest for graphene-based nanomaterials (GBMs) is growing worldwide as their properties allow the development of new innovative applications. In parallel, concerns are increasing about their potential adverse effects on the environment are increasing. The available data concerning the potential risk associated to exposure of aquatic organisms to these GBMs are still limited and little is known regarding their endocrine disruption potential.

View Article and Find Full Text PDF