Allosteric modulators bear great potential to fine-tune neurotransmitter action. Promising targets are metabotropic glutamate (mGlu) receptors, which are associated with numerous brain diseases. Orthosteric and allosteric ligands act in synergy to control the activity of these multidomain dimeric GPCRs.
View Article and Find Full Text PDFIn this work, the development of highly luminescent europium(III) complexes in water solution is reported, including their syntheses, analyses of their photophysical properties and applications in bioassays. Three Eu(III) complexes are derived from new ligands based on a tripyridinophane platform. There are four distinct sections in the structure of these ligands: an 18-membered polyaminocarboxylic macrocycle to bind efficiently lanthanide ions in aqueous solutions, three chromophoric subunits (4-(phenylethynyl)pyridine moieties) to effectively sensitize the emission of the metal, two peripheral moieties to solubilise the complex in aqueous media (sulfonate, sulfobetaine or glucose groups) and a free NH group available for grafting or bioconjugation.
View Article and Find Full Text PDFWe report the design and evaluation of pH responsive luminescent europium(iii) probes that allow conjugation to targeting vectors to monitor receptor internalisation in cells. The approach adopted here can be used to tag proteins selectively and to monitor uptake into more acidic organelles, thereby enhancing the performance of time-resolved internalisation assays that require pH monitoring in real time.
View Article and Find Full Text PDFFluorescence barcoding based on nanoparticles provides many advantages for multiparameter imaging. However, creating different concentration-independent codes without mixing various nanoparticles and by using single-wavelength excitation and emission for multiplexed cellular imaging is extremely challenging. Herein, we report the development of quantum dots (QDs) with two different SiO shell thicknesses (6 and 12 nm) that are coated with two different lanthanide complexes (Tb and Eu).
View Article and Find Full Text PDFLuminescent europium complexes are used in a broad range of applications as a result of their particular emissive properties. The synthesis and application of bright, highly water-soluble, and negatively charged sulfonic- or carboxylic acid derivatives of para-substituted aryl-alkynyl triazacyclononane complexes are described. Introduction of the charged solubilizing moieties suppresses cellular uptake or adsorption to living cells making them applicable for labeling and performing assays on membrane receptors.
View Article and Find Full Text PDFA series of europium and terbium complexes based on a functionalized triazacyclononane carboxylate or phosphinate macrocyclic ligand is described. The influence of the anionic group, that is, carboxylate, methylphosphinate, or phenylphosphinate, on the photophysical properties was studied and rationalized on the basis of DFT calculated structures. The nature, number, and position of electron-donating or electron-withdrawing aryl substituents were varied systematically within the same phenylethynyl scaffold in order to optimize the brightness of the corresponding europium complexes and investigate their two-photon absorption properties.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) and their ligands are traditionally characterized by radioligand-binding experiments. These experiments yield excellent quantitative data, but have low temporal and spatial resolution. In addition, the use of radioligands presents safety concerns.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2013
To maintain homeostasis, hypothalamic neurons in the arcuate nucleus must dynamically sense and integrate a multitude of peripheral signals. Blood-borne molecules must therefore be able to circumvent the tightly sealed vasculature of the blood-brain barrier to rapidly access their target neurons. However, how information encoded by circulating appetite-modifying hormones is conveyed to central hypothalamic neurons remains largely unexplored.
View Article and Find Full Text PDFSeven-transmembrane domain (7TM) receptors have important functions in cell-cell communication and can assemble into dimers or oligomers. Such complexes may allow specific functional cross-talk through trans-activation of interacting 7TMs, but this hypothesis requires further validation. Herein, we used the GABAB receptor, which is composed of two distinct subunits, GABAB1, which binds the agonist, and GABAB2, which activates G proteins, as a model system.
View Article and Find Full Text PDFG-protein-coupled receptors (GPCRs) are crucial cell surface receptors that transmit signals from a wide range of extracellular ligands. Indeed, 40% to 50% of all marketed drugs are thought to modulate GPCR activity, making them the major class of targets in the drug discovery process. Binding assays are widely used to identify high-affinity, selective, and potent GPCR drugs.
View Article and Find Full Text PDFThe growth hormone secretagogue receptor type 1a (GHS-R1a) belongs to class A G-protein-coupled receptors (GPCR). This receptor mediates pleiotropic effects of ghrelin and represents a promising target for dysfunctions of growth hormone secretion and energy homeostasis including obesity. Identification of new compounds which bind GHS-R1a is traditionally achieved using radioactive binding assays.
View Article and Find Full Text PDFG protein-coupled receptor (GPCR) oligomers have been proposed to play critical roles in cell signaling, but confirmation of their existence in a native context remains elusive, as no direct interactions between receptors have been reported. To demonstrate their presence in native tissues, we developed a time-resolved FRET strategy that is based on receptor labeling with selective fluorescent ligands. Specific FRET signals were observed with four different receptors expressed in cell lines, consistent with their dimeric or oligomeric nature in these transfected cells.
View Article and Find Full Text PDFCell-surface proteins are important in cell-cell communication. They assemble into heterocomplexes that include different receptors and effectors. Elucidation and manipulation of such protein complexes offers new therapeutic possibilities.
View Article and Find Full Text PDFPhospholipase C beta (PLC-beta)-coupled G protein-coupled receptor (GPCR) activities traditionally are assessed by measuring Ca2+ triggered by D-myo-inositol 1,4,5-trisphosphate (IP3), a PLC-beta hydrolysis product, or by measuring the production of inositol phosphate using cumbersome radioactive assays. A specific detection of IP3 production was also established using IP3 binding proteins. The short lifetime of IP3 makes this detection very challenging in measuring GPCR responses.
View Article and Find Full Text PDF