Lungs are the most frequent site of metastases growth. The amount and size of pulmonary metastases acquired from MRI imaging data are the important criteria to assess the efficacy of new drugs in preclinical models. While efficient solutions both for MR imaging and the downstream automatic segmentation have been proposed for human patients, both MRI lung imaging and segmentation in preclinical animal models remains challenging due to the physiological motion (respiratory and cardiac movements), to the low amount of protons in this organ and to the particular challenge of precise segmentation of metastases.
View Article and Find Full Text PDFAdvances in single-cell RNA sequencing have allowed for the identification of cellular subtypes on the basis of quantification of the number of transcripts in each cell. However, cells might also differ in the spatial distribution of molecules, including RNAs. Here, we present DypFISH, an approach to quantitatively investigate the subcellular localization of RNA and protein.
View Article and Find Full Text PDFDetection of RNA spots in single-molecule fluorescence in-situ hybridization microscopy images remains a difficult task, especially when applied to large volumes of data. The variable intensity of RNA spots combined with the high noise level of the images often requires manual adjustment of the spot detection thresholds for each image. In this work, we introduce DeepSpot, a Deep Learning-based tool specifically designed for RNA spot enhancement that enables spot detection without the need to resort to image per image parameter tuning.
View Article and Find Full Text PDFRNA subcellular localization has recently emerged as a widespread phenomenon, which may apply to the majority of RNAs. The two main sources of data for characterization of RNA localization are sequence features and microscopy images, such as obtained from single-molecule fluorescent in situ hybridization-based techniques. Although such imaging data are ideal for characterization of RNA distribution, these techniques remain costly, time-consuming, and technically challenging.
View Article and Find Full Text PDFFluorescence live-cell and super-resolution microscopy methods have considerably advanced our understanding of the dynamics and mesoscale organization of macro-molecular complexes that drive cellular functions. However, different imaging techniques can provide quite disparate information about protein motion and organization, owing to their respective experimental ranges and limitations. To address these issues, we present here a robust computer program, called FluoSim, which is an interactive simulator of membrane protein dynamics for live-cell imaging methods including SPT, FRAP, PAF, and FCS, and super-resolution imaging techniques such as PALM, dSTORM, and uPAINT.
View Article and Find Full Text PDF