Exp Biol Med (Maywood)
January 2021
malaria is a global health problem. Erythrocyte invasion by merozoites appears to be a promising target to curb malaria. We have identified and characterized a novel protein that is involved in erythrocyte invasion.
View Article and Find Full Text PDFNearly half of the genes in the genome have not yet been functionally investigated. We used homology-based structural modeling to identify multiple copies of Armadillo repeats within one uncharacterized gene expressed during the intraerythrocytic stages, PF3D7_0410600, subsequently referred to as Armadillo-Type Repeat Protein (PfATRP). Soluble recombinant PfATRP was expressed in a bacterial expression system, purified to apparent homogeneity and the identity of the recombinant PfATRP was confirmed by mass spectrometry.
View Article and Find Full Text PDFBackground: uses a repertoire of merozoite-stage proteins for invasion of erythrocytes. Antibodies against some of these proteins halt the replication cycle of the parasite by preventing erythrocyte invasion and are implicated as contributors to protective immunity against malaria.
Methods: We assayed antibody reactivity against a panel of 9 recombinant antigens based on erythrocyte-binding antigen (EBA) and reticulocyte-like homolog (Rh) proteins in plasma from children with malaria and healthy adults residing in 3 endemic areas in Ghana using enzyme-linked immunosorbent assay.
Plasmodium falciparum erythrocyte invasion is a multistep process that involves a spectrum of interactions that are not well characterized. We have characterized a 113-kDa immunogenic protein, PF3D7_1431400 (PF14_0293), that possesses coiled-coil structures. The protein is localized on the surfaces of both merozoites and gametocytes, hence the name Plasmodium falciparum surface-related antigen (PfSRA).
View Article and Find Full Text PDFErythrocyte invasion by Plasmodium falciparum merozoites is central to blood-stage infection and malaria pathogenesis. This intricate process is coordinated by multiple parasite adhesins that bind erythrocyte receptors and mediate invasion through several alternate pathways. P.
View Article and Find Full Text PDFErythrocyte invasion by Plasmodium falciparum merozoites is a highly intricate process in which Plasmodium falciparum reticulocyte binding-like homologous protein 5 (PfRH5) is an indispensable parasite ligand that binds with its erythrocyte receptor, Basigin. PfRH5 is a leading blood-stage vaccine candidate because it exhibits limited polymorphisms and elicits potent strain-transcending parasite neutralizing antibodies. However, the mechanism by which it is anchored to the merozoite surface remains unknown because both PfRH5 and the PfRH5-interacting protein (PfRipr) lack transmembrane domains and GPI anchors.
View Article and Find Full Text PDFJ Complement Integr Med
June 2014
Different fractions (I-V) of the methanolic leaf extracts of Annona senegalensis were assessed for their anti-snake venom activities. Fractions III neutralized lethal toxicity induced by Echis ocellatus venom and manifested the same potency as the crude extracts against the venom. The anti-snake venom activity of fraction III was clearly shown by the complete abrogation of venom-induced haemorrhage and the 75% record of surviving mice which were injected with a pre-incubate of venom and extract in the ratio 1:30 w/w after a 24 h.
View Article and Find Full Text PDFPlasmodium falciparum reticulocyte binding-like homologous protein 5 (PfRH5) is an essential merozoite ligand that binds with its erythrocyte receptor, basigin. PfRH5 is an attractive malaria vaccine candidate, as it is expressed by a wide number of P. falciparum strains, cannot be genetically disrupted, and exhibits limited sequence polymorphisms.
View Article and Find Full Text PDFThe antimalarial effect of the ethanolic stem bark extract of Ficus platyphylla Del was evaluated against Plasmodium berghei infection in mice. Nontreated, experimental control mice died of fulminant parasitemia from day 7 to 9 post-infection but mice treated with the extract at 300 mg/kg showed markedly reduced parasitaemia bouts of 43.50% and a mean survival time of 28 days postinfection.
View Article and Find Full Text PDF