Accurate intraoperative assessment of parathyroid blood flow is crucial to preserve function postoperatively. Indocyanine green (ICG) angiography has been successfully employed, however its conventional application has limitations. A label-free method overcomes these limitations, and laser speckle contrast imaging (LSCI) is one such method that can accurately detect and quantify differences in parathyroid perfusion.
View Article and Find Full Text PDFAccurate assessment of parathyroid gland vascularity is important during thyroidectomy to preserve the function of parathyroid glands and to prevent postoperative hypocalcemia. Laser speckle contrast imaging (LSCI) has been shown to be accurate in detecting differences in parathyroid vascularity. In this surgeon-blinded prognostic study, we evaluate the relationship between intraoperative LSCI measurements and postoperative outcomes of total thyroidectomy patients.
View Article and Find Full Text PDFBackground: Near infrared autofluorescence (NIRAF) detection has previously demonstrated significant potential for real-time parathyroid gland identification. However, the performance of a NIRAF detection device - PTeye® - remains to be evaluated relative to a surgeon's own ability to identify parathyroid glands.
Methods: Patients eligible for thyroidectomy and/or parathyroidectomy were enrolled under 6 endocrine surgeons at 3 high-volume institutions.
During thyroid surgeries, it is important for surgeons to accurately identify healthy parathyroid glands and assess their vascularity to preserve their function postoperatively, thus preventing hypoparathyroidism and hypocalcemia. Near infrared autofluorescence detection enables parathyroid identification, while laser speckle contrast imaging allows assessment of parathyroid vascularity. Here, we present an imaging system combining the two techniques to perform both functions, simultaneously and label-free.
View Article and Find Full Text PDFBackground: Patients undergoing thyroidectomy may have inadvertent damage or removal of the parathyroid gland(s) due to difficulty in real-time parathyroid identification. Near-infrared autofluorescence (NIRAF) has been demonstrated as a label-free modality for intraoperative parathyroid identification with high accuracy. This study presents the translation of that approach into a user-friendly clinical prototype for rapid intraoperative guidance in parathyroid identification.
View Article and Find Full Text PDFVascular infiltration and associated alterations in microvascular blood flow are critical for complete bone graft healing. Therefore, real-time, longitudinal measurement of blood flow has the potential to successfully predict graft healing outcomes. Herein, we non-invasively measure longitudinal blood flow changes in bone autografts and allografts using diffuse correlation spectroscopy in a murine femoral segmental defect model.
View Article and Find Full Text PDF