Angew Chem Int Ed Engl
May 2024
The use of a dual resin for photobiocatalysis, encompassing both a photocatalyst and an immobilized enzyme, brings several challenges, including effective immobilization, maintaining photocatalyst and enzyme activity and ensuring sufficient light penetration. However, the benefits, such as integrated processes, reusability, easier product separation, and potential for scalability, can outweigh these challenges, making dual resin systems promising for efficient and sustainable photobiocatalytic applications. In this study, we employed a photosensitizer-containing porous emulsion-templated polymer as a functional support that is used to covalently anchor a chloroperoxidase from Curvularia inaequalis (CiVCPO).
View Article and Find Full Text PDF1,2,6-Thiadiazines treated with visible light and O under ambient conditions are converted into difficult-to-access 1,2,5-thiadiazole 1-oxides (35 examples, yields of 39-100%). Experimental and theoretical studies reveal that 1,2,6-thiadiazines act as triplet photosensitizers that produce O and then undergo a chemoselective [3 + 2] cycloaddition to give an endoperoxide that ring contracts with selective carbon atom excision and complete atom economy. The reaction was optimized under both batch and continuous-flow conditions and is also efficient in green solvents.
View Article and Find Full Text PDFA new benzothiadiazole (BTZ) luminogen is prepared the Suzuki-Miyaura Pd-catalysed C-C cross-coupling of 8-iodoquinolin-4(1)-one and a BTZ bispinacol boronic ester. The rapid reaction (5 min) affords the air-, thermo-, and photostable product in 97% yield as a yellow precipitate that can be isolated by filtration. The luminogen exhibits aggregated-induced emission (AIE) properties, which are attributed to its photoactive BTZ core and nonplanar geometry.
View Article and Find Full Text PDFTwo robust and efficient mechanochemical protocols for the synthesis of an array of N-arylamides have been developed. This was achieved by a C-N cross-coupling between O-pivaloyl hydroxamic acids and aryl iodides or aryl boronic acids, in the presence of a stoichiometric amount of a copper mediator. The effectiveness of this method is highlighted by the high-yielding (up to 94 %), scalable (up to 8 mmol), and rapid (20 minutes) synthesis of N-aryl amides (15 examples), using a variety of deactivated and sterically encumbered substrates, whilst employing mild conditions and in the absence of solvents.
View Article and Find Full Text PDF