The Baltic Sea is one of the world's most contaminated seas with long-standing adverse health status of its wildlife such as the Baltic Sea salmon, resulting in reduced fecundity and increased mortality. While adverse health effects have been reported among wild fish from the Baltic Sea, the toxicity mechanisms underlying these adversities, and the chemical effect drivers mediating them are poorly understood. To address this knowledge gap, we utilized the zebrafish (Danio rerio) embryo model to determine molecular and functional effects brought on by exposure to a technical mixture including 9 organohalogen compounds detected in serum from wild-caught Baltic Sea salmon.
View Article and Find Full Text PDFAryl Hydrocarbon Receptor (AHR) signaling is crucial for regulating the biotransformation of xenobiotics and physiological processes like inflammation and immunity. Meanwhile, Peptide (P), a promising anti-inflammatory candidate from toadfish venom, demonstrates therapeutic effects through immunomodulation. However, its influence on AHR signaling remains unexplored.
View Article and Find Full Text PDFThe aryl hydrocarbon receptor is a ligand dependent transcription factor which functions as an environmental sensor. Originally discovered as the sensor for man made pollutants such as 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) it has recently gained prominence as an important mediator for environmental triggers via the diet or microbiota which influences many physiological functions in different cell types and tissues across the body. Notably AHR activity contributes to prevent excessive inflammation following tissue damage in barrier organs such as skin, lung or gut which has received wide attention in the past decade.
View Article and Find Full Text PDFManuka honey (MH) is a complex nutritional material with antimicrobial, antioxidant and anti-inflammatory activity. We have previously shown that MH down regulates IL-4-induced CCL26 expression in immortalized keratinocytes. As MH contains potential ligands of the Aryl Hydrocarbon Receptor (AHR), a key regulator of skin homeostasis, we hypothesize that this effect is mediated via AHR activation.
View Article and Find Full Text PDFThe zebrafish eleutheroembryo (zfe) is widely used as a model to characterize the toxicity of chemicals. However, analytical methods are still missing to measure organ concentrations. Therefore, physiologically-based toxicokinetic (PBTK) modeling may overcome current limitations to help understand the relationship between toxic effects and internal exposure in various organs.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) and pesticides are two major groups of environmental contaminants which humans are simultaneously exposed to. However, potential mixture interactions of these groups of chemicals are not well-studied. In this study, the effects of binary mixtures of the PAH benzo[a]pyrene (B[a]P) and the commonly used pesticides chlorpyrifos, paraquat and tebuconazole on human liver HepG2 cells were investigated.
View Article and Find Full Text PDFMultiple studies have reported synergized toxicity of PAH mixtures in developing fish larvae relative to the additive effect of the components. From a toxicological perspective, multiple mechanisms are known to contribute to synergism, such as altered toxicodynamics and kinetics, as well as increased oxidative stress. An understudied contributor to synergism is the accumulation of endogenous metabolites, for example: the aryl hydrocarbon receptor 2 (AhR2) agonist and tryptophan metabolite 6-Formylindolo(3,2-b)carbazole (FICZ).
View Article and Find Full Text PDFPersistent and semi-persistent halogenated compounds cause health problems for the animals occupying the upper level of the food web in the Baltic Sea. Atlantic salmon (Salmo salar), being a top piscivore in the Baltic Sea, has been observed to carry a large body burden of halogenated toxins. Here, a mixture of nine halogenated compounds belonging to different groups was created, based on the observed composition of halogenated toxins in salmon serum.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) are widely spread environmental contaminants which affect developing organisms. It is known that improper activation of the aryl hydrocarbon receptor (AhR) by some PAHs contributes to toxicity, while other PAHs can disrupt cellular membrane function. The exact downstream mechanisms of AhR activation remain unresolved, especially with regard to cardiotoxicity.
View Article and Find Full Text PDFNat Rev Gastroenterol Hepatol
August 2021
Mammalian aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor that belongs to the basic helix-loop-helix (bHLH)-PAS family of transcription factors, which are evolutionarily conserved environmental sensors. In the absence of ligands, AHR resides in the cytoplasm in a complex with molecular chaperones such as HSP90, XAP2 and p23. Upon ligand binding, AHR translocates into the nuclear compartment, where it dimerizes with its partner protein, AHR nuclear translocator (ARNT), an obligatory partner for the DNA-binding and functional activity.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) are contaminants of concern that impact every sphere of the environment. Despite several decades of research, their mechanisms of toxicity are still poorly understood. This study explores the mechanisms of cardiotoxicity of the three widespread model PAHs retene, pyrene and phenanthrene in the rainbow trout (Oncorhynchus mykiss) early life stages.
View Article and Find Full Text PDFPerfluorinated alkyl acids (PFAA) are highly persistent and bioaccumulative and have been associated with several adverse health effects. The chemical structure mainly differs in two ways: the length of the hydrophobic alkyl chain and the type of hydrophilic end group. Little is known how the chemical structure affects the toxicokinetics (TK) in different organisms.
View Article and Find Full Text PDFThe aryl hydrocarbon receptor (AHR) controls interleukin 22 production by T helper 17 cells (Th17). IL-22 contributes to intestinal homeostasis but has also been implicated in chronic inflammatory disorders and colorectal cancer, highlighting the need for appropriate regulation of IL-22 production. Upon activation, the AHR induces expression of cytochrome P4501 (CYP1) enzymes which in turn play an important feedback role that curtails the duration of AHR signaling by metabolizing AHR ligands.
View Article and Find Full Text PDFMany chemicals accumulate in organisms through a variety of different mechanisms. Cationic amphiphilic drugs (CADs) accumulate in lysosomes and bind to membranes causing phospholipidosis, whereas many lipophilic chemicals target adipose tissue. Perfluoroalkyl substances (PFASs) are widely used as surfactants, but many of them are highly bioaccumulating and persistent in the environment, making them notorious environmental toxicants.
View Article and Find Full Text PDFThe aryl hydrocarbon receptor (AHR) recognizes xenobiotics as well as natural compounds such as tryptophan metabolites, dietary components and microbiota-derived factors, and it is important for maintenance of homeostasis at mucosal surfaces. AHR activation induces cytochrome P4501 (CYP1) enzymes, which oxygenate AHR ligands, leading to their metabolic clearance and detoxification. Thus, CYP1 enzymes have an important feedback role that curtails the duration of AHR signalling, but it remains unclear whether they also regulate AHR ligand availability in vivo.
View Article and Find Full Text PDF6-Formylindolo[3,2-b]carbazole (FICZ) is a potent aryl hydrocarbon receptor (AHR) agonist that is efficiently metabolized by AHR-regulated cytochrome P4501 enzymes. FICZ is a proposed physiological AHR ligand that induces its own degradation as part of a regulatory negative feedback loop. In vitro studies in cells show that CYP1 inhibition in the presence of FICZ results in enhanced AHR activation, suggesting that FICZ accumulates in the cell when its metabolism is blocked.
View Article and Find Full Text PDFOxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) are found in the environment together with PAHs. However, less is known concerning their biological activity including their impact on aryl hydrocarbon receptor (AHR) signalling and the subsequent modulation of the cytochrome P450 monooxygenases (CYP). In this study, the effects of 15 environmentally relevant oxy-PAHs on the induction and activity of the CYP1 enzymes were determined by measuring gene expression levels and enzyme activity.
View Article and Find Full Text PDFActivation of the aryl hydrocarbon receptor (AhR), a conserved transcription factor best known as a target for highly toxic halogenated substances such as dioxin, under normal xenobiotic-free conditions is of considerable scientific interest. We have demonstrated previously that a photoproduct of tryptophan, 6-formylindolo[3,2-b]carbazole (FICZ), fulfills the criteria for an endogenous ligand for this receptor and proposed that this compound is the enigmatic mediator of the physiological functions of AhR. Here, we describe novel light-independent pathways by which FICZ can be formed.
View Article and Find Full Text PDFMany industrial sites are polluted by complex mixtures of polycyclic aromatic compounds (PACs). Besides polycyclic aromatic hydrocarbons (PAHs), these mixtures often contain significant amounts of more polar PACs including oxygenated PAHs (oxy-PAHs). The effects of oxy-PAHs are, however, poorly known.
View Article and Find Full Text PDFWnt/β-catenin signaling regulates essential biological functions and acts in developmental toxicity of some chemicals. The aryl hydrocarbon receptor (AHR) is well-known to mediate developmental toxicity of persistent dioxin-like compounds (DLCs). Recent studies indicate a crosstalk between β-catenin and the AHR in some tissues.
View Article and Find Full Text PDFSeveral polyphenols have been shown to activate the aryl hydrocarbon receptor (AHR) in spite of the fact that they bind to the receptor with low affinity. The aim of this study was to investigate whether quercetin (QUE), resveratrol (RES), and curcumin (CUR) interfere with the metabolic degradation of the suggested endogenous AHR ligand 6-formylindolo[3,2-b]carbazole (FICZ) and thereby indirectly activate the AHR. Using recombinant human enzyme, we confirmed earlier reported inhibitory effects of the polyphenols on cytochrome P4501A1 (CYP1A1) activity, and inhibition of metabolic clearance of FICZ was documented in FICZ-treated immortalized human keratinocytes (HaCaT).
View Article and Find Full Text PDFAltered systemic levels of 6-formylindolo[3,2-b]carbazole (FICZ), an enigmatic endogenous ligand for the aryl hydrocarbon receptor (AHR), may explain adverse physiological responses evoked by small natural and anthropogenic molecules as well as by oxidative stress and light. We demonstrate here that several different chemical compounds can inhibit the metabolism of FICZ, thereby disrupting the autoregulatory feedback control of cytochrome P4501 systems and other proteins whose expression is regulated by AHR. FICZ is both the most tightly bound endogenous agonist for the AHR and an ideal substrate for cytochrome CYP1A1/1A2 and 1B1, thereby also participating in an autoregulatory loop that keeps its own steady-state concentration low.
View Article and Find Full Text PDFA series of thio- and selenopyrans having two fused indole units, structurally related to indolocarbazoles, have been prepared and evaluated for aryl hydrocarbon receptor (AhR) affinity, leading to the identification of several new significant AhR ligands. In particular, the parent thiopyrano[2,3-b:6,5-b']diindole and its derivative having a methyl group in the central ring, as well as the two corresponding selenopyrans, displayed the highest potencies of the compounds tested.
View Article and Find Full Text PDFDioxins and other polycyclic aromatic compounds formed during the combustion of waste and fossil fuels represent a risk to human health, as well as to the well being of our environment. Compounds of this nature exert carcinogenic and endocrine-disrupting effects in experimental animals by binding to the orphan aryl hydrocarbon receptor (AhR). Understanding the mechanism of action of these pollutants, as well as the physiological role(s) of the AhR, requires identification of the endogenous ligand(s) of this receptor.
View Article and Find Full Text PDF