Background: In the short term, parental presence while a human infant is in pain buffers the immediate pain responses, although emerging evidence suggests repeated social buffering of pain may have untoward long-term effects.
Methods/finding: To explore the short- and long-term impacts of social buffering of pain, we first measured the infant rat pup's [postnatal day (PN) 8, or 12] response to mild tail shock with the mother present compared to shock alone or no shock. Shock with the mother reduced pain-related behavioral activation and USVs of pups at both ages and reduced Fos expression in the periaqueductal gray, hypothalamic paraventricular nucleus, and the amygdala at PN12 only.
Microbiol Resour Announc
November 2020
Apex and Gophee are mycobacteriophages directly isolated from soil using the host mc155. Apex has a 71,244-bp double-stranded DNA (dsDNA) genome encoding 98 putative proteins, and Gophee has a 68,556-bp dsDNA genome encoding 101 putative proteins.
View Article and Find Full Text PDFThe roots of psychopathology frequently take shape during infancy in the context of parent-infant interactions and adversity. Yet, neurobiological mechanisms linking these processes during infancy remain elusive. Here, using responses to attachment figures among infants who experienced adversity as a benchmark, we assessed rat pup cortical local field potentials (LFPs) and behaviors exposed to adversity in response to maternal rough and nurturing handling by examining its impact on pup separation-reunion with the mother.
View Article and Find Full Text PDFInfant maltreatment increases vulnerability to physical and mental disorders, yet specific mechanisms embedded within this complex infant experience that induce this vulnerability remain elusive. To define critical features of maltreatment-induced vulnerability, rat pups were reared from postnatal day 8 (PN8) with a maltreating mother, which produced amygdala and hippocampal deficits and decreased social behavior at PN13. Next, we deconstructed the maltreatment experience to reveal sufficient and necessary conditions to induce this phenotype.
View Article and Find Full Text PDFAuditory learning is associated with an enhanced representation of acoustic cues in primary auditory cortex, and modulation of inhibitory strength is causally involved in learning. If this inhibitory plasticity is associated with task learning and improvement, its expression should emerge and persist until task proficiency is achieved. We tested this idea by measuring changes to cortical inhibitory synaptic transmission as adult gerbils progressed through the process of associative learning and perceptual improvement.
View Article and Find Full Text PDFCaregiver-associated cues, including those learned in abusive attachment, provide a sense of safety and security to the child. Here, we explore how cues associated with abusive attachment, such as maternal odor, can modify the enduring neurobehavioral effects of early-life abuse. Two early-life abuse models were used: a naturalistic paradigm, where rat pups were reared by an abusive mother; and a more controlled paradigm, where pups underwent peppermint odor-shock conditioning that produces an artificial maternal odor through engagement of the attachment circuit.
View Article and Find Full Text PDFPatterns of neural activity are critical for sculpting the immature brain, and disrupting this activity is believed to underlie neurodevelopmental disorders [1-3]. Neural circuits undergo extensive activity-dependent postnatal structural and functional changes [4-6]. The different forms of neural plasticity [7-9] underlying these changes have been linked to specific patterns of spatiotemporal activity.
View Article and Find Full Text PDFFront Syst Neurosci
April 2014
Sensory experience during early development can shape the central nervous system and this is thought to influence adult perceptual skills. In the auditory system, early induction of conductive hearing loss (CHL) leads to deficits in central auditory coding properties in adult animals, and this is accompanied by diminished perceptual thresholds. In contrast, a brief regimen of auditory training during development can enhance the perceptual skills of animals when tested in adulthood.
View Article and Find Full Text PDFBehav Neurosci
February 2014
Measures of human mental development suggest that behavioral skills displayed during early life can predict an individual's subsequent cognitive performance. Support for this draws from longitudinal studies that reveal compelling within-subject correlations during childhood. If this idea applies across the life span, then correlations in performance should persist into adulthood.
View Article and Find Full Text PDFManipulations of the sensory environment typically induce greater changes to the developing nervous system than they do in adulthood. The relevance of these neural changes can be evaluated by examining the age-dependent effects of sensory experience on quantitative measures of perception. Here, we measured frequency modulation (FM) detection thresholds in adult gerbils and investigated whether diminished auditory experience during development or in adulthood influenced perceptual performance.
View Article and Find Full Text PDFThe acoustic rearing environment can alter central auditory coding properties, yet altered neural coding is seldom linked with specific deficits to adult perceptual skills. To test whether developmental hearing loss resulted in comparable changes to perception and sensory coding, we examined behavioral and neural detection thresholds for sinusoidally amplitude modulated (sAM) stimuli. Behavioral sAM detection thresholds for slow (5 Hz) modulations were significantly worse for animals reared with bilateral conductive hearing loss (CHL), as compared to controls.
View Article and Find Full Text PDFThe relationship between behavioral and neural performance has been explored in adult animals, but rarely during the developmental period when perceptual abilities emerge. We used these naturally occurring changes in auditory perception to evaluate underlying encoding mechanisms. Performance of juvenile and adult gerbils on an amplitude modulation (AM) detection task was compared with response properties from auditory cortex of age-matched animals.
View Article and Find Full Text PDFSensory experience during development can modify the CNS and alter adult perceptual skills. While this principle draws support from deprivation or chronic stimulus exposure studies, the effect of training is addressed only in adults. Here, we asked whether a brief period of training during development can exert a unique impact on adult perceptual skills.
View Article and Find Full Text PDFIn humans, auditory perception reaches maturity over a broad age range, extending through adolescence. Despite this slow maturation, children are considered to be outstanding learners, suggesting that immature perceptual skills might actually be advantageous to improvement on an acoustic task as a result of training (perceptual learning). Previous non-human studies have not employed an identical task when comparing perceptual performance of young and mature subjects, making it difficult to assess learning.
View Article and Find Full Text PDFWe have shown previously that auditory experience regulates the maturation of excitatory synapses in the auditory cortex (ACx). In this study, we used electron microscopic immunocytochemistry to determine whether the heightened excitability of the ACx following neonatal sensorineural hearing loss (SNHL) also involves pre- or postsynaptic alterations of GABAergic synapses. SNHL was induced in gerbils just prior to the onset of hearing (postnatal day 10).
View Article and Find Full Text PDF