Publications by authors named "Emma Rossinyol"

We evaluate the influence of the use of different titania precursors, calcination rate, and ligand addition on the morphology, texture and phase content of synthesized mesoporous titania samples, parameters which, in turn, can play a key role in titania photocatalytic performances. The powders, obtained through the evaporation-induced self-assembly method, are characterized by means of X-Ray Powder Diffraction (XRPD) measurements, N₂ physisorption isotherms and transmission electron microscopy. The precursors are selected basing on two different approaches: the acid-base pair, using TiCl₄ and Ti(OBu)₄, and a more classic route with Ti(OPr)₄ and HCl.

View Article and Find Full Text PDF

A novel nanocomposite material made of two-dimensional BiOCl nanoplates assembled into highly porous titania has been successfully prepared following a facile sol-gel reaction. Both the TiO2 (anatase) and BiOCl components are crystalline as demonstrated by X-ray diffraction and transmission electron microscopy analyses. TiO2 exhibits a highly porous network and possesses a small crystallite size, whereas BiOCl forms micrometer-sized plates with nanometer thicknesses.

View Article and Find Full Text PDF

The microstructure and mechanical properties of ZrCu AlM (M ≡ Fe or Co,  = 0, 0.5, 1 at.%) metallic glass (MG) composites are highly dependent on the amount of Fe or Co added as microalloying elements in the parent ZrCuAl material.

View Article and Find Full Text PDF

The controlled filling of the pores of highly ordered mesoporous antiferromagnetic Co3O4 replicas with ferrimagnetic FexCo3-xO4 nanolayers is presented as a proof-of-concept toward the integration of nanosized units in highly ordered, heterostructured 3D architectures. Antiferromagnetic (AFM) Co3O4 mesostructures are obtained as negative replicas of KIT-6 silica templates, which are subsequently coated with ferrimagnetic (FiM) FexCo3-xO4 nanolayers. The tuneable magnetic properties, with a large exchange bias and coercivity, arising from the FiM/AFM interface coupling, confirm the microstructure of this novel two-phase core-shell mesoporous material.

View Article and Find Full Text PDF

Immunocytochemistry and histochemistry are two most valuable immunochemistry techniques routinely used in biological laboratories. These techniques rely on the use of antibodies to label epitopes of interest in cells. At present, there is a wide range of commercially available organic dyes for labeling antibodies.

View Article and Find Full Text PDF

Hybrids of hydrophobic sub-2-nm-diameter dodecanethiol-coated Au nanoparticles and phosphatidylcholine (PC) lipid vesicles made by extrusion were examined by cryogenic transmission electron microscopy (cryoTEM). The nanoparticles loaded the vesicles as a dense monolayer in the hydrophobic core of the lipid bilayer, without disrupting their structure. Nanoparticle-vesicle hybrids could also be made by a dialysis process, mixing preformed vesicles with detergent-stabilized nanoparticles, but this approach led to vesicles only partially loaded with nanoparticles that segregated into hemispherical domains, forming a Janus vesicle-nanoparticle hybrid structure.

View Article and Find Full Text PDF

Background: The unique photonic properties of the recently developed fluorescent semiconductor nanocrystals (QDs) have made them a potential tool in biological research. However, QDs are not yet a part of routine laboratory techniques. Double and triple immunocytochemistries were performed in HeLa cell cultures with commercial CdSe QDs conjugated to antibodies.

View Article and Find Full Text PDF