The various bioactivity types and potencies of peptidic natural products (PNPs) are of high interest for the development of new drugs. In particular, the intrinsic antibiotic properties of PNPs appear essential to combat antimicrobial resistance that is currently threatening the world. The first steps in dereplication and characterization of PNPs often involve tandem mass spectrometry (MS/MS).
View Article and Find Full Text PDFNorine, the unique resource dedicated to nonribosomal peptides (NRPs), is now updated with a new pipeline to automate massive sourcing and enhance annotation. External databases are mined to extract NRPs that are not yet in Norine. To maintain a high data quality, successive filters are applied to automatically validate the NRP annotations and only validated data is inserted in the database.
View Article and Find Full Text PDFThe identification of known (dereplication) or unknown nonribosomal peptides (NRPs) produced by microorganisms is a time consuming, expensive, and challenging task where mass spectrometry and nuclear magnetic resonance play a key role. The first step of the identification process always involves the establishment of a molecular formula. Unfortunately, the number of potential molecular formulae increases significantly with higher molecular masses and the lower precision of their measurements.
View Article and Find Full Text PDFProteinogenic and non-proteinogenic amino acids, fatty acids or glycans are some of the main building blocks of nonribsosomal peptides (NRPs) and as such may give insight into the origin, biosynthesis and bioactivities of their constitutive peptides. Hence, the structural representation of NRPs using monomers provides a biologically interesting skeleton of these secondary metabolites. Databases dedicated to NRPs such as Norine, already integrate monomer-based annotations in order to facilitate the development of structural analysis tools.
View Article and Find Full Text PDF