Chronic kidney disease (CKD) patients have an increased risk of morbidity and mortality following SARS-CoV-2 infection. Vaccination in these patients is prioritized, and monitoring of the immune response is paramount to define further vaccination strategies. This prospective study included a cohort of 100 adult CKD patients: 48 with kidney transplant (KT) and 52 on hemodialysis without prior COVID-19.
View Article and Find Full Text PDFHuman NK cell deficiency (NKD) is a primary immunodeficiency in which the main clinically relevant immunological defect involves missing or dysfunctional NK cells. Here, we describe a familial NKD case in which 2 siblings had a substantive NKD and neutropenia in the absence of other immune system abnormalities. Exome sequencing identified compound heterozygous variants in Go-Ichi-Ni-San (GINS) complex subunit 4 (GINS4, also known as SLD5), an essential component of the human replicative helicase, which we demonstrate to have a damaging impact upon the expression and assembly of the GINS complex.
View Article and Find Full Text PDFBackground: Multisystemic inflammatory syndrome in children (MIS-C) is a life-threatening disease that occurs 2-5 weeks after severe acute respiratory syndrome coronavirus 2 exposure and is characterized by severe multisystemic inflammation. Early recognition of MIS-C is key to prognosis; therefore, establishing clinical and laboratory biomarkers that predict complications is urgently needed.
Objective: We characterized the immune response and clinical features of patients with acute MIS-C and determined biomarkers of disease in a cohort of 42 Latin American patients.
Dysregulation in neutrophil extracellular trap (NET) formation and degradation may play a role in the pathogenesis and severity of COVID-19; however, its role in the pediatric manifestations of this disease, including multisystem inflammatory syndrome in children (MIS-C) and chilblain-like lesions (CLLs), otherwise known as "COVID toes," remains unclear. Studying multinational cohorts, we found that, in CLLs, NETs were significantly increased in serum and skin. There was geographic variability in the prevalence of increased NETs in MIS-C, in association with disease severity.
View Article and Find Full Text PDFThe antibody profile against autoantigens previously associated with autoimmune diseases and other human proteins in patients with COVID-19 or multisystem inflammatory syndrome in children (MIS-C) remains poorly defined. Here we show that 30% of adults with COVID-19 had autoantibodies against the lung antigen KCNRG, and 34% had antibodies to the SLE-associated Smith-D3 protein. Children with COVID-19 rarely had autoantibodies; one of 59 children had GAD65 autoantibodies associated with acute onset of insulin-dependent diabetes.
View Article and Find Full Text PDFUnlabelled: Dysregulation in neutrophil extracellular trap (NET) formation and degradation may play a role in the pathogenesis and severity of COVID-19; however, its role in the pediatric manifestations of this disease including MIS-C and chilblain-like lesions (CLL), otherwise known as "COVID toes", remains unclear. Studying multinational cohorts, we found that, in CLL, NETs were significantly increased in serum and skin. There was geographic variability in the prevalence of increased NETs in MIS-C, in association with disease severity.
View Article and Find Full Text PDFBackground: Respiratory syncytial virus (RSV) is responsible for most respiratory tract infections and hospitalizations in infants and represents a significant economic burden for public health. The development of a safe, effective, and affordable vaccine is a priority for the WHO.
Methods: We conducted a double-blinded, escalating-dose phase 1 clinical trial in healthy males aged 18-50 years to evaluate safety, tolerability, and immunogenicity of a recombinant BCG vaccine expressing the nucleoprotein of RSV (rBCG-N-hRSV).
Human respiratory syncytial virus (hRSV) and human metapneumovirus (hMPV) cause acute respiratory tract infections in children worldwide. Natural killer T (NKT) cells are unconventional T lymphocytes, and their TCRs recognize glycolipids bound to the MHC-I-like molecule, CD1d. These cells modulate the inflammatory response in viral infections.
View Article and Find Full Text PDFT cells play an essential role in the immune response against the human respiratory syncytial virus (hRSV). It has been described that both CD4 and CD8 T cells can contribute to the clearance of the virus during an infection. However, for some individuals, such an immune response can lead to an exacerbated and detrimental inflammatory response with high recruitment of neutrophils to the lungs.
View Article and Find Full Text PDFBackground: One of the major problems in the production of lipids for biotechnological purposes using microalgae is maintaining a high productivity of these molecules without reducing cellular biomass. High production rates are usually obtained by cultivating microalgae under different stress conditions. However, many of these changes usually result in lower biomass productivity.
View Article and Find Full Text PDFThe Human Respiratory Syncytial Virus (hRSV) and the Human Metapneumovirus (hMPV) are two pneumoviruses that are leading agents causing acute lower respiratory tract infections (ALRTIs) affecting young infants, the elderly, and immunocompromised patients worldwide. Since these pathogens were first discovered, many approaches for the licensing of safe and effective vaccines have been explored being unsuccessful to date. We have previously described that immunization with recombinant strains of Bacillus Calmette-Guérin (rBCG) expressing the hRSV nucleoprotein (rBCG-N) or the hMPV phosphoprotein (rBCG-P) induced immune protection against each respective virus.
View Article and Find Full Text PDFIntroduction: The human respiratory syncytial virus (hRSV) is the main cause of acute lower respiratory tract infection in susceptible population worldwide, such as young children and the elderly. Although hRSV is a major public health burden, there are no licensed vaccines and the only available therapy is palivizumab. During life, reinfections with hRSV are common, suggesting that the virus can impair the development of an efficient host immune response.
View Article and Find Full Text PDFVaccines have significantly reduced the detrimental effects of numerous human infectious diseases worldwide, helped to reduce drastically child mortality rates and even achieved eradication of major pathogens, such as smallpox. These achievements have been possible due to a dedicated effort for vaccine research and development, as well as an effective transfer of these vaccines to public health care systems globally. Either public or private institutions have committed to developing and manufacturing vaccines for local or international population supply.
View Article and Find Full Text PDFThe Human Respiratory Syncytial Virus (hRSV) is a major cause of acute lower respiratory tract infections (ARTIs) and high rates of hospitalizations in children and in the elderly worldwide. Symptoms of hRSV infection include bronchiolitis and pneumonia. The lung pathology observed during hRSV infection is due in part to an exacerbated host immune response, characterized by immune cell infiltration to the lungs.
View Article and Find Full Text PDFThe human Respiratory Syncytial Virus (hRSV) causes lower respiratory tract infections including pneumonia and bronchiolitis. Such infections also cause a large number of hospitalizations and affects mainly newborns, young children and the elderly worldwide. Symptoms associated with hRSV infection are due to an exacerbated immune response characterized by low levels of IFN-γ, recruitment of neutrophils and eosinophils to the site of infection and lung damage.
View Article and Find Full Text PDFThe human respiratory syncytial virus (hRSV) is the causative agent for high rates of hospitalizations due to viral bronchiolitis and pneumonia worldwide. Such a disease is characterized by an infection of epithelial cells of the distal airways that leads to inflammation and subsequently to respiratory failure. Upon infection, different pattern recognition receptors recognize the virus and trigger the innate immune response against the hRSV.
View Article and Find Full Text PDFHuman respiratory syncytial virus (hRSV) is a major health burden worldwide, causing the majority of hospitalizations in children under two years old due to bronchiolitis and pneumonia. HRSV causes year-to-year outbreaks of disease, which also affects the elderly and immunocompromised adults. Furthermore, both hRSV morbidity and epidemics are explained by a consistently high rate of re-infections that take place throughout the patient life.
View Article and Find Full Text PDFThe human respiratory syncytial virus (hRSV) is by far the major cause of acute lower respiratory tract infections (ALRTIs) worldwide in infants and children younger than 2 years. The overwhelming number of hospitalizations due to hRSV-induced ALRTI each year is due, at least in part, to the lack of licensed vaccines against this virus. Thus, hRSV infection is considered a major public health problem and economic burden in most countries.
View Article and Find Full Text PDFThe objective of this study was to examine the in vitro synergism of three-drug combinations against Mycobacterium tuberculosis (levofloxacin/linezolid/ethambutol, levofloxacin/amikacin/ethambutol and levofloxacin/linezolid/amikacin) using the time-kill curves method. In total, 8 multidrug-resistant and 12 drug-susceptible M. tuberculosis isolates were used.
View Article and Find Full Text PDFAlthough identified in the 1960's, interest in autophagy has significantly increased in the past decade with notable research efforts oriented at understanding as to how this multi-protein complex operates and is regulated. Autophagy is commonly defined as a "self-eating" process evolved by eukaryotic cells to recycle senescent organelles and expired proteins, which is significantly increased during cellular stress responses. In addition, autophagy can also play important roles during human diseases, such as cancer, neurodegenerative and autoimmune disorders.
View Article and Find Full Text PDFMultidrug resistance is a problem in the management of tuberculosis, creating an urgent need for new regimens including currently available drugs. Macrophage models allow an evaluation of the effect of drugs against intracellular bacilli. The effect of the following different drug combinations against six multidrug-resistant and six drug-susceptible clinical isolates of Mycobacterium tuberculosis multiplying inside the human macrophage THP-1 cell line was studied: levofloxacin/linezolid/ethambutol; levofloxacin/amikacin/ethambutol; and levofloxacin/linezolid/amikacin.
View Article and Find Full Text PDFIn cases of multidrug-resistant tuberculosis, it is crucial to rule out resistance to second-line antituberculous (anti-TB) agents. In the present study, a low-cost low-density DNA array including four genetic regions (rrs 530 loop, rrs 1400, rpsL and gyrA) was designed for the rapid detection of the most important mutations related to anti-TB injectable drugs (mainly streptomycin) and fluoroquinolone resistance (LD-SQ array). A total of 108 streptomycin- and/or ofloxacin-resistant and 20 streptomycin- and ofloxacin-susceptible Mycobacterium tuberculosis clinical isolates were analysed with the array.
View Article and Find Full Text PDF