Publications by authors named "Emma Rettner"

Synthetic polymers have found widespread use with functional lifetimes from seconds to decades. However, the lack of end-of-life treatment for these plastics is causing a significant environmental and human health crisis due to their persistence and bioaccumulation. Upcycling post-consumer plastic waste to products with inherent recyclability is an attractive strategy to tackle this problem, as it can broaden the range of accessible materials and uncover unprecedented features while dealing with current plastic waste.

View Article and Find Full Text PDF

Herein, we report a selective photooxidation of commodity postconsumer polyolefins to produce polymers with in-chain ketones. The reaction does not involve the use of catalyst, metals, or expensive oxidants, and selectively introduces ketone functional groups. Under mild and operationally simple conditions, yields up to 1.

View Article and Find Full Text PDF

Developing plastics that fill the need of polyolefins yet are more easily recyclable is a critical need to address the plastic waste crisis. However, most efforts in this vein have focused on high-density polyethylene (PE), while many different types of PE exist. To create broadly sustainable PE with modular properties, we present the synthesis, characterization, and demonstration of materials applications for chemically recyclable PE-like multiblock polymers prepared from distinct hard and soft blocks using ruthenium-catalyzed dehydrogenative polymerization.

View Article and Find Full Text PDF

Polyolefins are the most important and largest volume plastics produced. Unfortunately, the enormous use of plastics and lack of effective disposal or recycling options have created a plastic waste catastrophe. In this work, we report an approach to create chemically recyclable polyolefin-like materials with diverse mechanical properties through the construction of multiblock polymers from hard and soft oligomeric building blocks synthesized with ruthenium-mediated ring-opening metathesis polymerization of cyclooctenes.

View Article and Find Full Text PDF

To fully explore bottlebrush polymer networks as potential model materials, a robust and versatile synthetic platform is required. Ring-opening metathesis polymerization is a highly controlled, rapid, and functional group tolerant polymerization technique that has been used extensively for bottlebrush polymer generation but to this point has not been used to synthesize bottlebrush polymer networks. We polymerized a mononorbornene macromonomer and dinorbornene cross-linker (both poly(-butyl acrylate)) with Grubbs' third-generation catalyst to achieve bottlebrush networks and in turn demonstrated control over network properties as the ratio of macromonomer and cross-linker was varied.

View Article and Find Full Text PDF