Moiré superlattices of semiconducting transition metal dichalcogenide heterobilayers are model systems for investigating strongly correlated electronic phenomena. Specifically, WSe/WS moiré superlattices have emerged as a quantum simulator for the two-dimensional extended Hubbard model. Experimental studies of charge transport have revealed correlated Mott insulator and generalized Wigner crystal states, but spin transport of the moiré heterostructure has not yet been sufficiently explored.
View Article and Find Full Text PDFStacking van der Waals crystals allows for the on-demand creation of a periodic potential landscape to tailor the transport of quasiparticle excitations. We investigate the diffusion of photoexcited electron-hole pairs, or excitons, at the interface of WS/WSe van der Waals heterostructure over a wide range of temperatures. We observe the appearance of distinct interlayer excitons for parallel and antiparallel stacking and track their diffusion through spatially and temporally resolved photoluminescence spectroscopy from 30 to 250 K.
View Article and Find Full Text PDFSince its release the Power Threat Meaning Framework (PTMF) has received considerable interest and uptake. However, there have not yet been any attempts to review the scope of this emergent literature. This scoping review aimed to identify and synthesize: (1) all empirical research which utilized the PTMF in their methodologies, (2) the characteristics of these studies, (3) the different ways in which these studies utilized the PTMF, and (4) the key findings of these studies.
View Article and Find Full Text PDFTransition metal dichalcogenide-based moiré superlattices exhibit strong electron-electron correlations, thus giving rise to strongly correlated quantum phenomena such as generalized Wigner crystal states. Evidence of Wigner crystals in transition metal dichalcogenide moire superlattices has been widely reported from various optical spectroscopy and electrical conductivity measurements, while their microscopic nature has been limited to the basic lattice structure. Theoretical studies predict that unusual quasiparticle excitations across the correlated gap between upper and lower Hubbard bands can arise due to long-range Coulomb interactions in generalized Wigner crystal states.
View Article and Find Full Text PDFCoupled two-dimensional electron-hole bilayers provide a unique platform to study strongly correlated Bose-Fermi mixtures in condensed matter. Electrons and holes in spatially separated layers can bind to form interlayer excitons, composite Bosons expected to support high-temperature exciton condensates. The interlayer excitons can also interact strongly with excess charge carriers when electron and hole densities are unequal.
View Article and Find Full Text PDFPhotoinduced charge transfer in van der Waals heterostructures occurs on the 100 fs timescale despite weak interlayer coupling and momentum mismatch. However, little is understood about the microscopic mechanism behind this ultrafast process and the role of the lattice in mediating it. Here, using femtosecond electron diffraction, we directly visualize lattice dynamics in photoexcited heterostructures of WSe/WS monolayers.
View Article and Find Full Text PDFMoiré superlattices in van der Waals (vdW) heterostructures form by stacking atomically thin layers on top of one another with a twist angle or lattice mismatch. The resulting moiré potential leads to a strong modification of the band structure, which can give rise to exotic quantum phenomena ranging from correlated insulators and superconductors to moiré excitons and Wigner crystals. Here, we demonstrate the dynamic tuning of moiré potential in a WSe/WS heterostructure at cryogenic temperature.
View Article and Find Full Text PDFThe Wigner crystal has fascinated condensed matter physicists for nearly 90 years. Signatures of two-dimensional (2D) Wigner crystals were first observed in 2D electron gases under high magnetic field, and recently reported in transition metal dichalcogenide moiré superlattices. Direct observation of the 2D Wigner crystal lattice in real space, however, has remained an outstanding challenge.
View Article and Find Full Text PDFThe search for materials with flat electronic bands continues due to their potential to drive strong correlation and symmetry breaking orders. Electronic moirés formed in van der Waals heterostructures have proved to be an ideal platform. However, there is no holistic experimental picture for how superlattices modify electronic structure.
View Article and Find Full Text PDFSurface plasmons, collective electromagnetic excitations coupled to conduction electron oscillations, enable the manipulation of light-matter interactions at the nanoscale. Plasmon dispersion of metallic structures depends sensitively on their dimensionality and has been intensively studied for fundamental physics as well as applied technologies. Here, we report possible evidence for gate-tunable hybrid plasmons from the dimensionally mixed coupling between one-dimensional (1D) carbon nanotubes and two-dimensional (2D) graphene.
View Article and Find Full Text PDFMoiré superlattices in transition metal dichalcogenide (TMD) heterostructures can host novel correlated quantum phenomena due to the interplay of narrow moiré flat bands and strong, long-range Coulomb interactions. However, microscopic knowledge of the atomically reconstructed moiré superlattice and resulting flat bands is still lacking, which is critical for fundamental understanding and control of the correlated moiré phenomena. Here we quantitatively study the moiré flat bands in three-dimensional (3D) reconstructed WSe/WS moiré superlattices by comparing scanning tunnelling spectroscopy (STS) of high-quality exfoliated TMD heterostructure devices with ab initio simulations of TMD moiré superlattices.
View Article and Find Full Text PDFWe report the nanoscale conductivity imaging of correlated electronic states in angle-aligned WSe_{2}/WS_{2} heterostructures using microwave impedance microscopy. The noncontact microwave probe allows us to observe the Mott insulating state with one hole per moiré unit cell that persists for temperatures up to 150 K, consistent with other characterization techniques. In addition, we identify for the first time a Mott insulating state at one electron per moiré unit cell.
View Article and Find Full Text PDFMoiré superlattices can be used to engineer strongly correlated electronic states in two-dimensional van der Waals heterostructures, as recently demonstrated in the correlated insulating and superconducting states observed in magic-angle twisted-bilayer graphene and ABC trilayer graphene/boron nitride moiré superlattices. Transition metal dichalcogenide moiré heterostructures provide another model system for the study of correlated quantum phenomena because of their strong light-matter interactions and large spin-orbit coupling. However, experimental observation of correlated insulating states in this system is challenging with traditional transport techniques.
View Article and Find Full Text PDFThe Berry phase of Bloch states can have profound effects on electron dynamics and lead to novel transport phenomena, such as the anomalous Hall effect and the valley Hall effect. Recently, it was predicted that the Berry phase effect can also modify the exciton states in transition metal dichalcogenide monolayers, and lift the energy degeneracy of exciton states with opposite angular momentum through an effective valley-orbital coupling. Here, we report the observation and control of the Berry phase-induced splitting of the 2p exciton states in monolayer molybdenum diselenide (MoSe) using the intraexciton optical Stark spectroscopy.
View Article and Find Full Text PDFChange history: In this Letter, the following text has been added to the Acknowledgements section: "the scanning transmission electron microscopy measurements at the Molecular Foundry were supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract number DE-AC02-05CH11231". See accompanying Amendment.
View Article and Find Full Text PDFMoiré superlattices enable the generation of new quantum phenomena in two-dimensional heterostructures, in which the interactions between the atomically thin layers qualitatively change the electronic band structure of the superlattice. For example, mini-Dirac points, tunable Mott insulator states and the Hofstadter butterfly pattern can emerge in different types of graphene/boron nitride moiré superlattices, whereas correlated insulating states and superconductivity have been reported in twisted bilayer graphene moiré superlattices. In addition to their pronounced effects on single-particle states, moiré superlattices have recently been predicted to host excited states such as moiré exciton bands.
View Article and Find Full Text PDFVan der Waals heterostructures are synthetic quantum materials composed of stacks of atomically thin two-dimensional (2D) layers. Because the electrons in the atomically thin 2D layers are exposed to layer-to-layer coupling, the properties of van der Waals heterostructures are defined not only by the constituent monolayers, but also by the interactions between the layers. Many fascinating electrical, optical and magnetic properties have recently been reported in different types of van der Waals heterostructures.
View Article and Find Full Text PDFTransition metal dichalcogenide (TMDC) materials are promising for spintronic and valleytronic applications because valley-polarized excitations can be generated and manipulated with circularly polarized photons and the valley and spin degrees of freedom are locked by strong spin-orbital interactions. In this study we demonstrate efficient generation of a pure and locked spin-valley diffusion current in tungsten disulfide (WS)-tungsten diselenide (WSe) heterostructures without any driving electric field. We imaged the propagation of valley current in real time and space by pump-probe spectroscopy.
View Article and Find Full Text PDFBlack phosphorus (b-P) and more recently black phosphorus-arsenic alloys (b-PAs) are candidate 2D materials for the detection of mid-wave and potentially long-wave infrared radiation. However, studies to date have utilized laser-based measurements to extract device performance and the responsivity of these detectors. As such, their performance under thermal radiation and spectral response has not been fully characterized.
View Article and Find Full Text PDFThe isofrequency contours of a photonic crystal are important for predicting and understanding exotic optical phenomena that are not apparent from high-symmetry band structure visualizations. We demonstrate a method to directly visualize the isofrequency contours of high-quality photonic crystal slabs that show quantitatively good agreement with numerical results throughout the visible spectrum. Our technique relies on resonance-enhanced photon scattering from generic fabrication disorder and surface roughness, so it can be applied to general photonic and plasmonic crystals or even quasi-crystals.
View Article and Find Full Text PDF