Publications by authors named "Emma R Moffett"

Larger animals studied during ontogeny, across populations, or across species, usually have lower mass-specific metabolic rates than smaller animals (hypometric scaling). This pattern is usually observed regardless of physiological state (e.g.

View Article and Find Full Text PDF

Metabolism is a fundamental attribute of all organisms that influences how species affect and are affected by their natural environment. Differences between sexes in ectothermic species may substantially alter metabolic scaling patterns, particularly in viviparous or live-bearing species where females must support their basal metabolic costs and that of their embryos. Indeed, if pregnancy is associated with marked increases in metabolic demand and alters scaling patterns between sexes, this could in turn interact with natural sex ratio variation in nature to affect population-level energy demand.

View Article and Find Full Text PDF

Acute exposure to warming temperatures increases minimum energetic requirements in ectotherms. However, over and within multiple generations, increased temperatures may cause plastic and evolved changes that modify the temperature sensitivity of energy demand and alter individual behaviors. Here, we aimed to test whether populations recently exposed to geothermally elevated temperatures express an altered temperature sensitivity of metabolism and behavior.

View Article and Find Full Text PDF

Body size is a key functional trait that is predicted to decline under warming. Warming is known to cause size declines via phenotypic plasticity, but evolutionary responses of body size to warming are poorly understood. To test for warming-induced evolutionary responses of body size and growth rates, we used populations of mosquitofish () recently established (less than 100 years) from a common source across a strong thermal gradient (19-33°C) created by geothermal springs.

View Article and Find Full Text PDF

Trophic cascades have become a dominant paradigm in ecology, yet considerable debate remains about the relative strength of density- (consumptive) and trait-mediated (non-consumptive) effects in trophic cascades. This debate may, in part, be resolved by considering prey experience, which shapes prey traits (through genetic and plastic change) and influences prey survival (and therefore density). Here, we investigate the cascading role of prey experience through the addition of mosquitofish (Gambusia affinis) from predator-experienced or predator-naïve sources to mesocosms containing piscivorous largemouth bass (Micropterus salmoides), zooplankton, and phytoplankton.

View Article and Find Full Text PDF

Metabolism shapes the ecosystem role of organisms by dictating their energy demand and nutrient recycling potential. Metabolic theory (MTE) predicts consumer metabolic and recycling rates will rise with warming, especially if body size declines, but it ignores potential for adaptation. We measured metabolic and nutrient excretion rates of individuals from populations of a globally invasive fish that colonized sites spanning a wide temperature range (19-37°C) on two continents within the last 100 yr.

View Article and Find Full Text PDF