This paper studies the molecular organization, neuronal distribution and cellular differentiation dynamics of the giant fibrillar centers (GFCs) of nucleoli in rat sensory ganglia neurons. The GFC appeared as a round nucleolar domain (1-2 microm in diameter) partially surrounded by the dense fibrillar component and accompanied by numerous small FCs. By immunocytochemistry, the GFC concentrated the upstream binding factor, which may serve as a marker of this structure, and also contain RNA polymerase I, DNA topoisomerase I, SUMO-1 and Ubc9.
View Article and Find Full Text PDFIt is well established that forskolin-induced elevation of cAMP results in activation of DNA synthesis in Schwann cell cultures. This promitotic response is partially mediated by the Cdk2, which is required for the transition from the G1 to the S phase of the cell cycle. In the present study, we analyze the effects of cAMP elevation in cultured Schwann cells on the transcriptional activity and on the organization of two nuclear compartments involved in pre-mRNA processing: Cajal bodies (CBs) and splicing factor compartments.
View Article and Find Full Text PDFNuclear bodies represent a heterogeneous class of nuclear structures. Herein, we describe that a subset of nuclear bodies is highly enriched in components of the ubiquitin-proteasome pathway of proteolysis. We coined the term clastosome (from the Greek klastos, broken and soma, body) to refer to this type of nuclear body.
View Article and Find Full Text PDFIt is well-established that the neuronal cell nucleus is organized in discrete compartments involved in transcription and RNA processing. The main nuclear compartments in neurons include the chromosome territories, the nucleolus, nuclear speckles of splicing factors, Cajal bodies, and nuclear rodlets. The supraoptic nucleus (SON) neurons provide a powerful model in vivo to study the organization of these nuclear compartments in response to variations of cellular activity.
View Article and Find Full Text PDF