The gas phase is an idealized laboratory for the study of protein structure, from which it is possible to examine stable and transient forms of mass-selected ions in the absence of bulk solvent. With ion mobility-mass spectrometry (IM-MS) apparatus built to operate at both cryogenic and elevated temperatures, we have examined conformational transitions that occur to the monomeric proteins: ubiquitin, lysozyme, and α-synuclein as a function of temperature and in source activation. We rationalize the experimental observations with a temperature-dependent framework model and comparison to known conformers.
View Article and Find Full Text PDFAngew Chem Weinheim Bergstr Ger
June 2022
The effect of temperature on the stability of proteins is well explored above 298 K, but harder to track experimentally below 273 K. Variable-temperature ion mobility mass spectrometry (VT IM-MS) allows us to measure the structure of molecules at sub-ambient temperatures. Here we monitor conformational changes that occur to two isotypes of monoclonal antibodies (mAbs) on cooling by measuring their collision cross sections (CCS) at discrete drift gas temperatures from 295 to 160 K.
View Article and Find Full Text PDFThe effect of temperature on the stability of proteins is well explored above 298 K, but harder to track experimentally below 273 K. Variable-temperature ion mobility mass spectrometry (VT IM-MS) allows us to measure the structure of molecules at sub-ambient temperatures. Here we monitor conformational changes that occur to two isotypes of monoclonal antibodies (mAbs) on cooling by measuring their collision cross sections (CCS) at discrete drift gas temperatures from 295 to 160 K.
View Article and Find Full Text PDF