Publications by authors named "Emma Newport"

Unlabelled: Despite substantial advances in the treatment of solid cancers, resistance to therapy remains a major obstacle to prolonged progression-free survival. Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers, with a high level of liver metastasis. Primary PDAC is highly hypoxic, and metastases are resistant to first-line treatment, including gemcitabine.

View Article and Find Full Text PDF

A common limitation of cancer treatments is chemotherapy resistance. We have previously identified that endothelial cell (EC)-specific deletion of focal adhesion kinase (FAK) sensitises tumour cells to DNA-damaging therapies, reducing tumour growth in mice. The present study addressed the kinase activity dependency of EC FAK sensitisation to the DNA-damaging chemotherapeutic drug, doxorubicin.

View Article and Find Full Text PDF

Several strategies have been developed to modulate the tumour vasculature for cancer therapy including anti-angiogenesis and vascular normalisation. Vasculature modulation results in changes to the tumour microenvironment including oxygenation and immune cell infiltration, therefore lending itself to combination with cancer therapy. The development of immunotherapies has led to significant improvements in cancer treatment.

View Article and Find Full Text PDF

Emerging evidence suggests that cancer cell metabolism can be regulated by cancer-associated fibroblasts (CAFs), but the mechanisms are poorly defined. Here we show that CAFs regulate malignant cell metabolism through pathways under the control of FAK. In breast and pancreatic cancer patients we find that low FAK expression, specifically in the stromal compartment, predicts reduced overall survival.

View Article and Find Full Text PDF

Present-day drug therapies provide clear beneficial effects as many diseases can be driven into remission and the symptoms of others can be efficiently managed; however, the success of many drugs is limited due to both patient non-compliance and adverse off-target or toxicity-induced effects. There is emerging evidence that many of these side effects are caused by drug-induced impairment of mitochondrial function and eventual mitochondrial dysfunction. It is imperative to understand how and why drug-induced side effects occur and how mitochondrial function is affected.

View Article and Find Full Text PDF

Influential research by Warburg and Cori in the 1920s ignited interest in how cancer cells' energy generation is different from that of normal cells. They observed high glucose consumption and large amounts of lactate excretion from cancer cells compared with normal cells, which oxidised glucose using mitochondria. It was therefore assumed that cancer cells were generating energy using glycolysis rather than mitochondrial oxidative phosphorylation, and that the mitochondria were dysfunctional.

View Article and Find Full Text PDF