Publications by authors named "Emma Luong-Van"

Objective: To evaluate the impact of sterilization methods on the structural integrity and antimicrobial properties of graphene nanocoating on titanium (GN).

Methods: GN was transferred to titanium using wet (WT) or dry transfer (DT) techniques and sterilized using an autoclave (AC), glutaraldehyde (GA), or ethylene oxide (EtO). The GN structure was characterized using Raman spectroscopy before and after sterilization.

View Article and Find Full Text PDF

Objective: Graphene and its derivatives, graphene oxide (GO) and reduced graphene oxide (rGO), are 2D carbon-based materials with remarkable physical, chemical and biological properties. Graphene sheets have high specific surface area and mechanical strength. Moreover, they have been shown to influence the differentiation of stem cells and to improve properties of biomaterials.

View Article and Find Full Text PDF

Heparin has a high affinity for bone morphogenetic protein-2 (BMP-2), which is a key growth factor in bone regeneration. The aim of this study was to investigate how the rate of release of BMP-2 was affected when adsorbed to nanosized hydroxyapatite (HAP) particles functionalized with heparin by different methods. Heparin was attached to the surface of HAP, either via adsorption or covalent coupling, via a 3-aminopropyltriethoxysilane (APTES) layer.

View Article and Find Full Text PDF

The spatial control of cells on a surface and the patterning of multiple cell types is an important tool for fundamental biological research and tissue engineering applications. A novel technique is described for the controlled seeding of multiple cell types at specific locations on a surface without requiring the use of specialized equipment or materials. Small-volume, quasi-hemispherical drops of cell solution are deposited onto a cell culture surface immersed under barrier oil, which serves to contain the drop and prevents evaporation of the cell culture medium during the time necessary for cells to attach to the cell culture surface.

View Article and Find Full Text PDF

Human mesenchymal stem cells (hMSCs) are an attractive tissue engineering avenue for the repair and regeneration of bone. In this study we detail the in vivo performance of a novel electrospun polycaprolactone scaffold incorporating the glycosaminoglycan heparan sulfate (HS) as a carrier for hMSC. HS is a multifunctional regulator of many key growth factors expressed endogenously during bone wound repair, and we have found it to be a potent stimulator of proliferation in hMSCs.

View Article and Find Full Text PDF

The glycosaminoglycan sugar heparan sulfate (HS) is an attractive agent for the repair of bone defects due to its ability to regulate endogenous growth factors. The sustained delivery of HS to the localized wound site over the period of healing which can last for over 1 month may prove advantageous for its therapeutic use. In this study we investigated the encapsulation of HS by the water-in oil-in water (W(1)/O/W(2)) technique in polycaprolactone (PCL) microcapsules as a prolonged delivery device.

View Article and Find Full Text PDF

Sustained delivery of heparin to the localized adventitial surface of grafted blood vessels has been shown to prevent the vascular smooth muscle cell (VSMC) proliferation that can lead to graft occlusion and failure. In this study heparin was incorporated into electrospun poly(epsilon-caprolactone) (PCL) fiber mats for assessment as a controlled delivery device. Fibers with smooth surfaces and no bead defects could be spun from polymer solutions with 8%w/v PCL in 7:3 dichloromethane:methanol.

View Article and Find Full Text PDF