In recentexperiments on co-culture between breast tumour spheroids and activated immune cells, it was observed that the introduction of the stress hormone cortisol resulted in a decreased immune cell infiltration into the spheroids. Moreover, the presence of cortisol deregulated the normal levels of the pro- and anti-inflammatory cytokines IFN-and IL-10. We present an individual-based model to explore the interaction dynamics between tumour and immune cells under psychological stress conditions.
View Article and Find Full Text PDFWe present an individual-based model for the coevolutionary dynamics between CD8+ cytotoxic T lymphocytes (CTLs) and tumour cells. In this model, every cell is viewed as an individual agent whose phenotypic state is modelled by a discrete variable. For tumour cells, this variable represents a parameterization of the antigen expression profiles, while for CTLs it represents a parameterization of the target antigens of T-cell receptors (TCRs).
View Article and Find Full Text PDFWe present a spatial hybrid discrete-continuum modelling framework for the interaction dynamics between tumour cells and cytotoxic T cells, which play a pivotal role in the immune response against tumours. In this framework, tumour cells and T cells are modelled as individual agents while chemokines that drive the chemotactic movement of T cells towards the tumour are modelled as a continuum. We formally derive the continuum counterpart of this model, which is given by a coupled system that comprises an integro-differential equation for the density of tumour cells, a partial differential equation for the density of T cells and a partial differential equation for the concentration of chemokines.
View Article and Find Full Text PDFIntra-tumour heterogeneity (ITH) has a strong impact on the efficacy of the immune response against solid tumours. The number of sub-populations of cancer cells expressing different antigens and the percentage of immunogenic cells (i.e.
View Article and Find Full Text PDF