Faithful and timely repair of DNA double-strand breaks (DSBs) is fundamental for the maintenance of genomic integrity. Here, we demonstrate that the meiotic recombination co-factor MND1 facilitates the repair of DSBs in somatic cells. We show that MND1 localizes to DSBs, where it stimulates DNA repair through homologous recombination (HR).
View Article and Find Full Text PDFCells respond to double-strand breaks (DSBs) by activating DNA damage response pathways, including cell cycle arrest. We have previously shown that a single double-strand break generated via CRISPR/Cas9 is sufficient to delay cell cycle progression and compromise cell viability. However, we also found that the cellular response to DSBs can vary, independent of the number of lesions.
View Article and Find Full Text PDFIn addition to central functions in cell adhesion signalling, integrin-associated proteins have wider roles at sites distal to adhesion receptors. In experimentally defined adhesomes, we noticed that there is clear enrichment of proteins that localise to the nucleus, and conversely, we now report that nuclear proteomes contain a class of adhesome components that localise to the nucleus. We here define a nucleo-adhesome, providing experimental evidence for a remarkable scale of nuclear localisation of adhesion proteins, establishing a framework for interrogating nuclear adhesion protein functions.
View Article and Find Full Text PDFAlternative lengthening of telomeres (ALT) occurs in ∼10% of cancer entities. However, little is known about the heterogeneity of ALT activity since robust ALT detection assays with high-throughput in situ readouts are lacking. Here, we introduce ALT-FISH, a method to quantitate ALT activity in single cells from the accumulation of single-stranded telomeric DNA and RNA.
View Article and Find Full Text PDF