This paper describes the use of the layered conductive metal-organic framework (MOF) (nickel)-(hexahydroxytriphenylene) [Ni(HHTP)] as a model system for understanding the process of self-assembly within this class of materials. We confirm and quantify experimentally the role of the oxidant in the synthetic process. Monitoring the deposition of Ni(HHTP) with infrared spectroscopy revealed that MOF formation is characterized by an initial induction period, followed by linear growth with respect to time.
View Article and Find Full Text PDFGasotransmitters, including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (HS), are a class of gaseous, endogenous signaling molecules that interact with one another in the regulation of critical cardiovascular, immune, and neurological processes. The development of analytical sensing mechanisms for gasotransmitters, especially multianalyte mechanisms, holds vast importance and constitutes a growing area of study. This review provides an overview of electrochemical sensing mechanisms with an emphasis on opportunities in multianalyte sensing.
View Article and Find Full Text PDFOwing to high modularity and synthetic tunability, metal-organic frameworks (MOFs) on textiles are poised to contribute to the development of state-of-the-art wearable systems with multifunctional performance. While these composite materials have demonstrated promising functions in sensing, filtration, detoxification, and biomedicine, their applicability in multifunctional systems is only beginning to materialize. This review highlights the multifunctionality and versatility of MOF-integrated textile systems.
View Article and Find Full Text PDF