is an engineered Wyeth-strain vaccinia oncolytic virus (OV), which has been tested extensively in clinical trials, demonstrating enhanced cytotoxic T cell infiltration into tumours following treatment. Favourable immune consequences to include the induction of an interferon (IFN) response, followed by inflammatory cytokine/chemokine secretion. This promotes tumour immune infiltration, innate and adaptive immune cell activation and T cell priming, culminating in targeted tumour cell killing, i.
View Article and Find Full Text PDFImproving the chances of curing patients with cancer who have had surgery to remove metastatic sites of disease is a priority area for cancer research. Pexa-Vec (Pexastimogene Devacirepvec; JX-594, TG6006) is a principally immunotherapeutic oncolytic virus that has reached late-phase clinical trials. We report the results of a single-center, nonrandomized biological end point study (trial registration: EudraCT number 2012-000704-15), which builds on the success of the presurgical intravenous delivery of oncolytic viruses to tumors.
View Article and Find Full Text PDFBackground: The oncolytic virus, coxsackievirus A21 (CVA21), has shown promise as a single agent in several clinical trials and is now being tested in combination with immune checkpoint blockade. Combination therapies offer the best chance of disease control; however, the design of successful combination strategies requires a deeper understanding of the mechanisms underpinning CVA21 efficacy, in particular, the role of CVA21 anti-tumor immunity. Therefore, this study aimed to examine the ability of CVA21 to induce human anti-tumor immunity, and identify the cellular mechanism responsible.
View Article and Find Full Text PDFImmune checkpoint inhibitors, including those targeting programmed cell death protein 1 (PD-1), are reshaping cancer therapeutic strategies. Evidence suggests, however, that tumor response and patient survival are determined by tumor programmed death ligand 1 (PD-L1) expression. We hypothesized that preconditioning of the tumor immune microenvironment using targeted, virus-mediated interferon (IFN) stimulation would up-regulate tumor PD-L1 protein expression and increase cytotoxic T cell infiltration, improving the efficacy of subsequent checkpoint blockade.
View Article and Find Full Text PDFThe last few years have seen an increased interest in immunotherapy in the treatment of malignant disease. In particular, there has been significant enthusiasm for oncolytic virotherapy, with a large amount of pre-clinical data showing promise in animal models in a wide range of tumour types. How do we move forward into the clinical setting and translate something which has such potential into meaningful clinical outcomes? Here, we review how the field of oncolytic virotherapy has developed thus far and what the future may hold.
View Article and Find Full Text PDFOncolytic viruses, which preferentially lyse cancer cells and stimulate an antitumor immune response, represent a promising approach to the treatment of cancer. However, how they evade the antiviral immune response and their selective delivery to, and replication in, tumor over normal tissue has not been investigated in humans. Here, we treated patients with a single cycle of intravenous reovirus before planned surgery to resect colorectal cancer metastases in the liver.
View Article and Find Full Text PDF