Publications by authors named "Emma Hornick"

The adaptor protein tumor necrosis factor receptor-associated factor 3 (TRAF3) is a multifaceted regulator of lymphocyte biology that plays key roles in modulation of the molecular signals required for T-cell activation and function. TRAF3 regulates signals mediated by the T-cell receptor (TCR), costimulatory molecules, and cytokine receptors, which each drive activation of the serine/threonine kinase Akt. The impact of TRAF3 upon TCR-CD28-mediated activation of Akt, and thus on the diverse cellular processes regulated by Akt, including CD4 T-cell fate decisions, remains poorly understood.

View Article and Find Full Text PDF

Tumor necrosis factor receptor (TNFR)-associated factor 3 (TRAF3) is an adapter protein with many context-specific functions. Early studies of lymphocyte TRAF3 hinted at TRAF3's importance for T cell function, but elucidation of specific mechanisms was delayed by early lethality of globally TRAF3 mice. Development of a conditional TRAF3-deficient mouse enabled important descriptive and mechanistic insights into how TRAF3 promotes optimal T cell function.

View Article and Find Full Text PDF

TNF receptor-associated factor 3 (TRAF3) is an adapter protein that inhibits many signals that promote B cell survival and activation. Mice with a B cell-specific TRAF3 deficiency and humans with a rare haploinsufficiency in TRAF3 have enhanced development of BCLs as they age. Loss-of-function mutations in TRAF3 are common in B cell malignancies.

View Article and Find Full Text PDF

Type I interferons (IFNs) are among the most powerful tools that host cells deploy against intracellular pathogens. Their effectiveness is due both to the rapid, directly antiviral effects of IFN-stimulated gene products and to the effects of type I IFN on responding immune cells. Type I IFN signaling through its receptor, IFNAR, is tightly regulated at multiple steps in the signaling cascade, including at the level of IFNAR downstream effectors, which include the kinase JAK1 and the transcriptional regulator STAT1.

View Article and Find Full Text PDF

Influenza A virus (IAV) is a leading cause of respiratory infections, with increased risk of severe illness and death in the very young, aged, and immunocompromised individuals. In both mice and humans, IAV-specific T cell responses are protective during primary as well as homologous and heterologous challenge infections. Many mouse studies have focused on CD4 T cells specific for a single, known model or IAV antigen.

View Article and Find Full Text PDF

Influenza A virus (IAV)-specific T cell responses are important correlates of protection during primary and subsequent infections. Generation and maintenance of robust IAV-specific T cell responses relies on T cell interactions with dendritic cells (DCs). In this study, we explore the role of nucleotide-binding domain leucine-rich repeat containing receptor family member NLRC4 in modulating the DC phenotype during IAV infection.

View Article and Find Full Text PDF

Influenza A virus (IAV) is a major cause of respiratory illness. Given the disease severity, associated economic costs, and recent appearance of novel IAV strains, there is a renewed interest in developing novel and efficacious "universal" IAV vaccination strategies. Recent studies have highlighted that immunizations capable of generating local (i.

View Article and Find Full Text PDF

Exaggerated inflammatory responses during influenza A virus (IAV) infection are typically associated with severe disease. Neutrophils are among the immune cells that can drive this excessive and detrimental inflammation. In moderation, however, neutrophils are necessary for optimal viral control.

View Article and Find Full Text PDF

The inbred mouse strain C57BL/6J is widely used in models of immunological and infectious diseases. Here we show that C57BL/6J mice have a defect in neutrophil recruitment to a range of inflammatory stimuli compared with the related C57BL/6N substrain. This immune perturbation is associated with a missense mutation in Nlrp12 in C57BL/6J mice.

View Article and Find Full Text PDF

Members of the NLR family can assemble inflammasome complexes with the adaptor protein ASC and caspase-1 that result in the activation of caspase-1 and the release of IL-1β and IL-18. Although the NLRC4 inflammasome is known to have a protective role in tumorigenesis, there is an increased appreciation for the inflammasome-independent actions of NLRC4. Here, we utilized a syngeneic subcutaneous murine model of B16F10 melanoma to explore the role of NLRC4 in tumor suppression.

View Article and Find Full Text PDF

Diabetes is a common and significant co-morbidity in cystic fibrosis (CF). The pathogenesis of cystic fibrosis related diabetes (CFRD) is incompletely understood. Because exocrine pancreatic disease is similar between humans and pigs with CF, the CF pig model has the potential to contribute significantly to the understanding of CFRD pathogenesis.

View Article and Find Full Text PDF

Background: Paraoxonase 1 (PON1) is a protein found associated with high density lipoprotein (HDL), thought to prevent oxidative modification of low-density lipoprotein (LDL). This enzyme has been implicated in lowering the risk of cardiovascular disease. Anoxia-reoxygenation and oxidative stress are important elements in cardiovascular and cerebrovascular disease.

View Article and Find Full Text PDF

Cystic fibrosis (CF) pigs develop disease with features remarkably similar to those in people with CF, including exocrine pancreatic destruction, focal biliary cirrhosis, micro-gallbladder, vas deferens loss, airway disease, and meconium ileus. Whereas meconium ileus occurs in 15% of babies with CF, the penetrance is 100% in newborn CF pigs. We hypothesized that transgenic expression of porcine CF transmembrane conductance regulator (pCFTR) cDNA under control of the intestinal fatty acid-binding protein (iFABP) promoter would alleviate the meconium ileus.

View Article and Find Full Text PDF

Paraoxonases (PON) are a family of proteins (PON1, 2 and 3) with multiple enzymatic activities. PON1 interferes with homoserine lactone-mediated quorum sensing in bacteria and with reactive oxygen species (ROS) in humans and mice. PON1 gene mutations have been linked to multiple traits, including aging, and diseases of the cardiovascular, nervous and gastrointestinal system.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. The most common CF-associated mutation is ΔF508, which deletes a phenylalanine in position 508. In vitro studies indicate that the resultant protein, CFTR-ΔF508, is misprocessed, although the in vivo consequences of this mutation remain uncertain.

View Article and Find Full Text PDF

Lung disease causes most of the morbidity and mortality in cystic fibrosis (CF). Understanding the pathogenesis of this disease has been hindered, however, by the lack of an animal model with characteristic features of CF. To overcome this problem, we recently generated pigs with mutated CFTR genes.

View Article and Find Full Text PDF

The nuclear lamina represents a protein network required for nuclear structure and function. One family of lamina proteins is defined by an approximately 40-aa LAP2, Emerin, and MAN1 (LEM) domain (LEM-D) that binds the nonspecific DNA-binding protein, barrier-to-autointegration factor (BAF). Through interactions with BAF, LEM-D proteins serve as a bridge between chromosomes and the nuclear envelope.

View Article and Find Full Text PDF