Loop-loop (also known as kissing) interactions between RNA hairpins are involved in several mechanisms in both prokaryotes and eukaryotes such as the regulation of the plasmid copy number or the dimerization of retroviral genomes. The stability of kissing complexes relies on loop parameters (base composition, sequence and size) and base combination at the loop-loop helix - stem junctions. In order to identify kissing partners that could be used as regulatory elements or building blocks of RNA scaffolds, we analysed a pool of 5.
View Article and Find Full Text PDFThis study describes for the first time the feasibility of using peptide nucleic acids (PNAs) as an alternative to the DNA probes in structure-switching aptamer fluorescence polarisation assays. The effects of experimental parameters such as the length of the PNA strand, the nature of dye and the buffer conditions on the assay performances are first explored using two different methodologies based on the competition between the PNA/aptamer hydribridisation and the target/aptamer complexation. D-ATP can be detected from 1 to 25 μM in a linear range and a detection limit (LOD) of 3 μM can be reached.
View Article and Find Full Text PDFWe very recently reported a novel aptamer biosensing concept based on a dual recognition mechanism originating from the small target-induced formation of a functional nucleic acid assembly. This assembly is constituted of a hairpin aptamer (named aptaswitch) for which the apical loop of the parent aptamer is substituted by a short RNA sequence prone to loop-loop interactions. It can switch between folded and unfolded states in the presence and in the absence of targets, respectively.
View Article and Find Full Text PDF