Several genetic variants have been shown to affect the mean number of offspring in different sheep breeds. Here, we analyzed samples from Icelandic sheep with the aim of identifying the genetic cause of the Icelandic Loa phenotype using three previously identified prolificacy genes as candidates. We demonstrate that a 4-bp frameshift deletion positioned in the mature region of the GDF9 protein in the Loa animals is a likely causal mutation for the observed increase in prolificacy; however, sequencing showed that not all ewes with a high number of offspring carried the deletion, suggesting the presence of a second mutation segregating within this group of animals.
View Article and Find Full Text PDFLivestock production is the most important component of northern European agriculture and contributes to and will be affected by climate change. Nevertheless, the role of farm animal genetic resources in the adaptation to new agro-ecological conditions and mitigation of animal production's effects on climate change has been inadequately discussed despite there being several important associations between animal genetic resources and climate change issues. The sustainability of animal production systems and future food security require access to a wide diversity of animal genetic resources.
View Article and Find Full Text PDFThe domestication of livestock represented a crucial step in human history. By using endogenous retroviruses as genetic markers, we found that sheep differentiated on the basis of their "retrotype" and morphological traits dispersed across Eurasia and Africa via separate migratory episodes. Relicts of the first migrations include the Mouflon, as well as breeds previously recognized as "primitive" on the basis of their morphology, such as the Orkney, Soay, and the Nordic short-tailed sheep now confined to the periphery of northwest Europe.
View Article and Find Full Text PDFRecent discoveries that high prolificacy in sheep carrying the Booroola gene (FecB) is the result of a mutation in the BMPIB receptor and high prolificacy in Inverdale sheep (FecX(I)) is the result of a mutation in the BMP15 oocyte-derived growth factor gene have allowed direct marker tests to be developed for FecB and FecX(I). These tests were carried out in seven strains of sheep (Javanese, Thoka, Woodlands, Olkuska, Lacaune, Belclare, and Cambridge) in which inheritance patterns have suggested the presence of major genes affecting prolificacy and in the prolific Garole sheep of India, which have been proposed as the ancestor of Australian Booroola Merinos. The FecB mutation was found in the Garole and Javanese sheep but not in Thoka, Woodlands, Olkuska, Lacaune, Belclare, and Cambridge sheep.
View Article and Find Full Text PDF