Polycyclic aromatic hydrocarbons (PAHs) are found throughout the interstellar medium and are important markers for the evolution of galaxies and both star and planet formation. They are also widely regarded as a major source of carbon, which has implications in the search for extraterrestrial life. Herein we construct a melting point phase diagram for a series of phenanthrene/pyrene binary mixtures to identify the eutectic composition (75 mol % phenanthrene) and its melting point (83 °C).
View Article and Find Full Text PDFSterically stabilized diblock copolymer nanoparticles with a well-defined spherical morphology and tunable diameter were prepared by RAFT aqueous emulsion polymerization of benzyl methacrylate at 70 °C. The steric stabilizer precursor used for these syntheses contained pendent -diol groups, which means that such nanoparticles can react with a suitable aldehyde-functional surface via acetal bond formation. This principle is examined herein by growing an aldehyde-functionalized polymer brush from a planar silicon wafer and studying the extent of nanoparticle adsorption onto this model substrate from aqueous solution at 25 °C using a quartz crystal microbalance (QCM).
View Article and Find Full Text PDFDynamic covalent chemistry has been exploited to prepare numerous examples of adaptable polymeric materials that exhibit unique properties. Herein, the chemical adsorption of aldehyde-functional diblock copolymer spherical nanoparticles onto amine-functionalized surface-grafted polymer brushes via dynamic Schiff base chemistry is demonstrated. Initially, a series of -diol-functional sterically-stabilized spheres of 30-250 nm diameter were prepared via reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2023
Hypothesis: Submicron oil droplets stabilized using aldehyde-functionalized nanoparticles should adhere to the primary amine groups present at the surface of sheep nasal mucosal tissue via Schiff base chemistry.
Experiments: Well-defined sterically-stabilized diblock copolymer nanoparticles of 20 nm diameter were prepared in the form of concentrated aqueous dispersions via reversible addition-fragmentation chain transfer (RAFT) aqueous emulsion polymerization of 2,2,2-trifluoroethyl methacrylate (TFEMA) using a water-soluble methacrylic precursor bearing cis-diol groups. Some of these hydroxyl-functional nanoparticles were then selectively oxidized using an aqueous solution of sodium periodate to form a second batch of nanoparticles bearing pendent aldehyde groups within the steric stabilizer chains.
Surface-initiated activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) is used to polymerize a -diol-functional methacrylic monomer (herein denoted GEO5MA) from planar silicon wafers. Ellipsometry studies indicated dry brush thicknesses ranging from 40 to 120 nm. The hydrophilic PGEO5MA brush is then selectively oxidized using sodium periodate to produce an aldehyde-functional hydrophilic PAGEO5MA brush.
View Article and Find Full Text PDFRAFT aqueous emulsion polymerization of isopropylideneglycerol monomethacrylate (IPGMA) is used to prepare a series of PGEO5MA -PIPGMA nanoparticles, where PGEO5MA is a hydrophilic methacrylic steric stabilizer block bearing pendent cis-diol groups. TEM studies confirm a spherical morphology while dynamic light scattering (DLS) analysis indicated that the z-average particle diameter can be adjusted by varying the target degree of polymerization for the core-forming PIPGMA block. Periodate oxidation is used to convert the cis-diol groups on PGEO5MA -PIPGMA and PGEO5MA -PIPGMA nanoparticles into the analogous aldehyde-functionalized nanoparticles, which are then reacted with histidine via reductive amination.
View Article and Find Full Text PDFA series of thermoresponsive diblock copolymer worm gels is prepared reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate using a water-soluble methacrylic precursor bearing pendent -diol groups. Selective oxidation using an aqueous solution of sodium periodate affords the corresponding aldehyde-functional worm gels. The aldehyde groups are located within the steric stabilizer chains and the aldehyde content can be adjusted by varying the periodate/-diol molar ratio.
View Article and Find Full Text PDFWe report the rational design of aldehyde-functional sterically stabilized diblock copolymer nano-objects in aqueous solution polymerization-induced self-assembly. More specifically, reversible addition-fragmentation chain transfer aqueous dispersion polymerization of 2-hydroxypropyl methacrylate is conducted using a water-soluble precursor block in which every methacrylic repeat unit contains a pendent oligo(ethylene glycol) side chain capped with a -diol unit. Systematic variation of the reaction conditions enables the construction of a pseudo-phase diagram, which ensures the reproducible targeting of pure spheres, worms, or vesicles.
View Article and Find Full Text PDFAldehyde groups enable facile conjugation to proteins, enzymes, oligonucleotides or fluorescent dyes, yet there are no literature examples of water-soluble aldehyde-functional vinyl monomers. We report the synthesis of a new hydrophilic cis-diol-based methacrylic monomer (GEO5MA) by transesterification of isopropylideneglycerol penta(ethylene glycol) using methyl methacrylate followed by acetone deprotection via acid hydrolysis. The corresponding water-soluble aldehyde monomer, AGEO5MA, is prepared by aqueous periodate oxidation of GEO5MA at 22 °C.
View Article and Find Full Text PDFPolymerization-induced self-assembly (PISA) is a powerful platform technology for the rational and efficient synthesis of a wide range of block copolymer nano-objects (e.g., spheres, worms or vesicles) in various media.
View Article and Find Full Text PDF