Dev Neurobiol
November 2023
Social memories formed in early life, like those for family and unrelated peers, are known to contribute to healthy social interactions throughout life, although how the developing brain supports social memory remains relatively unexplored. The CA2 subregion of the hippocampus is involved in social memory function, but most literature on this subject is restricted to studies of adult rodents. Here, we review the current literature on the embryonic and postnatal development of hippocampal subregion CA2 in mammals, with a focus on the emergence of its unusual molecular and cellular characteristics, including its notably high expression of plasticity-suppressing molecules.
View Article and Find Full Text PDFBackground: Excessive repetitive behavior is a debilitating symptom of several neuropsychiatric disorders. Parvalbumin-positive inhibitory interneurons in the dorsal striatum have been linked to repetitive behavior, and a sizable portion of these cells are surrounded by perineuronal nets (PNNs), specialized extracellular matrix structures. Although PNNs have been associated with plasticity and neuropsychiatric disease, no previous studies have investigated their involvement in excessive repetitive behavior.
View Article and Find Full Text PDFIt is now well-established that the hippocampal CA2 region plays an important role in social recognition memory in adult mice. The CA2 is also important for the earliest social memories, including those that mice have for their mothers and littermates, which manifest themselves as a social preference for familiarity over novelty. The role of the CA2 in the development of social memory for recently encountered same-age conspecifics, that is, peers, has not been previously reported.
View Article and Find Full Text PDFSocial memory dysfunction is an especially devastating symptom of many neuropsychiatric disorders, which makes understanding the cellular and molecular processes that contribute to such abnormalities important. Evidence suggests that the hippocampus, particularly the CA2 region, plays an important role in social memory. We sought to identify potential mechanisms of social memory dysfunction in the hippocampus by investigating features of neurons, glia, and the extracellular matrix (ECM) of BTBR mice, an inbred mouse strain with deficient social memory.
View Article and Find Full Text PDFSome of the most enduring social connections begin when infants first recognize their caregivers, memories that form the basis of many family relationships. It remains unknown whether these early social memories persist into adulthood in mice and, if so, which brain regions support them. Here we show that mice form memories of their mother within days after birth and that these memories persist into adulthood.
View Article and Find Full Text PDFAdult-born granule cells (abGCs) integrate into the hippocampus and form connections with dentate gyrus parvalbumin-positive (PV+) interneurons, a circuit important for modulating plasticity. Many of these interneurons are surrounded by perineuronal nets (PNNs), extracellular matrix structures known to participate in plasticity. We compared abGC projections to PV+ interneurons with negative-to-low intensity PNNs to those with high intensity PNNs using retroviral and 3R-Tau labeling in adult mice, and found that abGC mossy fibers and boutons are more frequently located near PV+ interneurons with high intensity PNNs.
View Article and Find Full Text PDFDepression is a complex psychiatric disorder that is a major burden on society, with only ~33% of depressed patients attaining remission upon initial monotherapy with a selective serotonin reuptake inhibitor (SSRI). In preclinical studies using rodents, chronic stress paradigms, such as chronic corticosterone and social instability stress, are used to induce avoidance behaviors associated with negative affective states. Chronic fluoxetine (FLX; an SSRI) treatment reverses these chronic stress-induced behavioral changes in some, but not all mice, permitting stratification of mice into behavioral responders and non-responders to FLX.
View Article and Find Full Text PDFThroughout adulthood, the dentate gyrus continues to produce new granule cells, which integrate into the hippocampal circuitry. New neurons have been linked to several known functions of the hippocampus, including learning and memory, anxiety and stress regulation, and social behavior. We explored whether transgenic reduction of adult-born neurons in mice would impair social memory and the formation of social dominance hierarchies.
View Article and Find Full Text PDFRationale: Some mood disorders, such as major depressive disorder, are more prevalent in women than in men. However, historically preclinical studies in rodents have a lower inclusion rate of females than males, possibly due to the fact that behavior can be affected by the estrous cycle. Several studies have demonstrated that chronic antidepressant treatment can decrease anxiety-associated behaviors and increase adult hippocampal neurogenesis in male rodents.
View Article and Find Full Text PDF