Publications by authors named "Emma Dello Iacovo"

Fifty-five strains of Ostreopsis were collected in the Mediterranean Sea and analyzed to characterize their toxin profiles. All the strains were grown in culture under the same experimental conditions and identified by molecular PCR assay based on the ITS-5.8S rDNA.

View Article and Find Full Text PDF
Article Synopsis
  • Intense blooms of the toxic dinoflagellate Ostreopsis can have harmful effects on humans and marine life due to toxin production, particularly palytoxin-like compounds.
  • The study focused on the Conero Riviera in the northern Adriatic Sea, revealing that high temperatures and balanced nutrient levels lead to the initiation and maintenance of these blooms while increasing toxin levels.
  • It was found that the initial phase of the bloom is the most hazardous for human health, as the toxin concentration decreases over time when environmental conditions become less favorable.
View Article and Find Full Text PDF

Blooms of the toxic dinoflagellate Ostreopsis cf. ovata are usually associated with shallow and calm coastal waters, characterized by low nutrient concentrations. The algal cells typically cover the benthic substrates, such as the macroalgal and invertebrate communities and rocks, forming a mucilaginous film.

View Article and Find Full Text PDF

Palytoxins from Ostreopsis cf. ovata (a putative palytoxin and ovatoxins) are emerging toxins in the Mediterranean basin and are not yet regulated, although there is evidence that they can accumulate in seafood and thus enter the human food chain. This poses serious concerns for human health, because palytoxin itself is among the most potent marine toxins known.

View Article and Find Full Text PDF

The dinoflagellate Alexandrium minutum is known for the production of potent neurotoxins affecting the health of human seafood consumers via paralytic shellfish poisoning (PSP). The aim of this study was to investigate the relationship between the toxin content and the expression level of the genes involved in paralytic shellfish toxin (PST) production. The algal cultures were grown both in standard f/2 medium and in phosphorus/nitrogen limitation.

View Article and Find Full Text PDF
Article Synopsis
  • A respiratory syndrome in humans has been linked to blooms of the marine alga Ostreopsis cf. ovata in the Mediterranean, particularly since the 1990s.
  • O. cf. ovata is known to produce potent toxins similar to palytoxin, which may contribute to respiratory illnesses.
  • A study conducted in 2009-2010 found Ostreopsis cells and the presence of ovatoxins in marine aerosols along the Tuscan coast, marking the first detection of these toxins in the air, although more research is needed regarding their inhalation effects.
View Article and Find Full Text PDF

Palytoxin ranks among the most potent marine biotoxins. Its lethality was well known to native Hawaiians that used to smear a "moss" containing the toxin on their spears to cause instant death to their victims. Human intoxications due to exposure to palytoxin and to its many congeners have been reported worldwide.

View Article and Find Full Text PDF

More than 40 years after its isolation, the understanding of how palytoxin interacts with biological systems has yet to be fully determined. The Na(+),K(+)-ATPase pump constitutes a molecular receptor for palytoxin that is able to convert the pump into an open channel, with consequent loss of cellular K(+) and remarkable rise of cytosolic Na(+) levels. In addition, a slight permeability to Ca(2+) is detected when palytoxin binds to the pump.

View Article and Find Full Text PDF

Ovatoxin-a is the main toxin produced by Ostreopsis ovata, a benthic dinoflagellate that has bloomed massively across the Mediterranean basin over the past years, inflicting both human and environmental suffering. Ovatoxin-a has recently been isolated from cultures of O. ovata and structurally identified as an analogue of palytoxin: in comparison with palytoxin, ovatoxin-a lacks three hydroxy groups at the 17-, 44- and 64-positions, but features an extra hydroxy functionality at the 42-position.

View Article and Find Full Text PDF

Mass appearances of the toxic dinoflagellate genus Ostreopsis are known to cause dangerous respiratory symptoms in humans exposed to aerosols. The outbreaks can appear in shallow marine waters of temperate regions around the globe. We followed a massive bloom event on a public beach on the northern Adriatic coast near Rovinj, Croatia.

View Article and Find Full Text PDF

Currently, the benthic dinoflagellate Ostreopsis cf. ovata represents a serious concern to human health in the whole Mediterranean basin due to the production of palytoxin congeners, a putative palytoxin and ovatoxins (ovatoxin-a, -b, -c, -d/-e), listed among the most potent marine toxins. High resolution liquid chromatography-mass spectrometry (HR LC-MS) based investigation of a North Western Adriatic strain of Ostreopsis cf.

View Article and Find Full Text PDF

Since 2005, the benthic dinoflagellate Ostreopsis cf. ovata has bloomed across the Mediterranean basin, provoking serious toxic outbreaks. LC/MS studies have identified a number of palytoxin-like compounds, termed ovatoxins, along with trace amounts of putative palytoxin as the causative agents of the O.

View Article and Find Full Text PDF

Intense blooms of the benthic dinoflagellate Ostreopsis cf. ovata have occurred in the northern Adriatic Sea since 2006. These blooms are associated with noxious effects on human health and with the mortality of benthic organisms because of the production of palytoxin-like compounds.

View Article and Find Full Text PDF

Blooms of Ostreopsis spp. have been recently reported along the Mediterranean coasts of Spain, France, Italy, and Greece posing serious risks to human health. Occurrence of Ostreopsis spp.

View Article and Find Full Text PDF

The state of the art of LC-MS of palytoxin and its analogues is reported in the present review. MS data for palytoxin, 42-hydroxy-palytoxin, ostreocin-D, mascarenotoxins, and ovatoxins, obtained using different ionization techniques, namely fast-atom bombardment (FAB), matrix assisted laser desorption ionization (MALDI), and electrospray ionization (ESI), are summarized together with the LC-MS methods used for their detection. Application of the developed LC-MS methods to both plankton and seafood analysis is also reported, paying attention to the extraction procedures used and to limits of detection (LOD) and quantitation (LOQ) achieved.

View Article and Find Full Text PDF

Over the past decades, Italian coastlines have been plagued by recurring presence of the benthic dinoflagellate Ostreopsis ovata. Such an alga has caused severe sanitary emergencies and economic losses due to its production of palytoxin-like compounds. Previous studies have confirmed the presence of ovatoxin-a (OVTX-a) as the major toxin of the algal toxin profile together with small amounts of putative palytoxin (PLTX).

View Article and Find Full Text PDF

Alexandrium ostenfeldii is a widespread toxic dinoflagellate that has recently bloomed across the Adriatic Sea, seriously threatening both shellfish consumers and aquacultures. In 2007 we reported on preliminary studies carried out on field samples and cultures of A. ostenfeldii.

View Article and Find Full Text PDF

This paper reports on the analysis of the toxin content from Palythoa tuberculosa and Palythoa toxica samples collected off of the Hawaiian coast. Our work, based on in-depth high-resolution liquid chromatography-mass spectrometry analysis along with extensive NMR study, led us to structurally characterize 42-hydroxy-palytoxin, a new palytoxin congener. This toxin and palytoxin itself appeared to be the major components of toxic extract from a P.

View Article and Find Full Text PDF

Massive blooms of the benthic dinoflagellate Ostreopsis ovata Fukuyo have recently occurred along the whole Italian coastlines, both Tyrrhenian and Adriatic, resulting sometimes in benthonic biocenosis sufferings and, occasionally, in human health problems. In this work, two strains of O. ovata collected in 2006 along the Adriatic and Tyrrhenian coastlines and grown in culture were studied to characterize their growth and toxin profile.

View Article and Find Full Text PDF