Microcrystal electron diffraction (MicroED) has emerged as a powerful technique for unraveling molecular structures from microcrystals too small for X-ray diffraction. However, a significant hurdle arises with plate-like crystals that consistently orient themselves flat on the electron microscopy grid. If the normal of the plate correlates with the axes of the crystal lattice, the crystal orientations accessible for measurement are restricted because the crystal cannot be arbitrarily rotated.
View Article and Find Full Text PDFParitaprevir is an orally bioavailable, macrocyclic drug used for treating chronic Hepatitis C virus (HCV) infection. Its structures have been elusive to the public until recently when one of the crystal forms is solved by microcrystal electron diffraction (MicroED). In this work, the MicroED structures of two distinct polymorphic crystal forms of paritaprevir are reported from the same experiment.
View Article and Find Full Text PDFMicrocrystal electron diffraction (MicroED) has emerged as a powerful technique for unraveling molecular structures from microcrystals too small for X-ray diffraction. However, a significant hurdle arises with plate-like crystals that consistently orient themselves flat on the electron microscopy grid. If, as is typically the case, the normal of the plate correlates with the axes of the crystal lattice, the crystal orientations accessible for measurement are restricted because the grid cannot be arbitrarily rotated.
View Article and Find Full Text PDFMacrocycles are important drug leads with many advantages including the ability to target flat and featureless binding sites as well as to act as molecular chameleons and thereby reach intracellular targets. However, due to their complex structures and inherent flexibility, macrocycles are difficult to study structurally, and there are limited structural data available. Herein, we use the cryo-EM method MicroED to determine the novel atomic structures of several macrocycles that have previously resisted structural determination.
View Article and Find Full Text PDFMicrocrystal electron diffraction (MicroED) is an emerging technique that has shown great potential for describing new chemical and biological molecular structures. Several important structures of small molecules, natural products, and peptides have been determined using methods. However, only a couple of novel protein structures have thus far been derived by MicroED.
View Article and Find Full Text PDFThe cryo-electron microscopy (cryo-EM) method microcrystal electron diffraction (MicroED) was initially described in 2013 and has recently gained attention as an emerging technique for research in drug discovery. As compared to other methods in structural biology, MicroED provides many advantages deriving from the use of nanocrystalline material for the investigations. Here, we review the recent advancements in the field of MicroED and show important examples of small molecule, peptide and protein structures that has contributed to the current development of this method as an important tool for drug discovery.
View Article and Find Full Text PDFBiocatalytic carbene transfer from diazo compounds is a versatile strategy in asymmetric synthesis. However, the limited pool of stable diazo compounds constrains the variety of accessible products. To overcome this restriction, we have engineered variants of protoglobin (Pgb) that use diazirines as carbene precursors.
View Article and Find Full Text PDFUpregulation of the transcription factor Nrf2 by inhibition of the interaction with its negative regulator Keap1 constitutes an opportunity for the treatment of disease caused by oxidative stress. We report a structurally unique series of nanomolar Keap1 inhibitors obtained from a natural product-derived macrocyclic lead. Initial exploration of the structure-activity relationship of the lead, followed by structure-guided optimization, resulted in a 100-fold improvement in inhibitory potency.
View Article and Find Full Text PDFMethods Mol Biol
August 2021
Microcrystal Electron Diffraction (MicroED) is the newest cryo-electron microscopy (cryo-EM) method, with over 70 protein, peptide, and several small organic molecule structures already determined. In MicroED, micro- or nanocrystalline samples in solution are deposited on electron microscopy grids and examined in a cryo-electron microscope, ideally under cryogenic conditions. Continuous rotation diffraction data are collected and then processed using conventional X-ray crystallography programs.
View Article and Find Full Text PDFCovering: 2013 to 2020The electron cryo-microscopy (cryo-EM) method Microcrystal Electron Diffraction (MicroED) allows the collection of high-resolution structural data from vanishingly small crystals that appear like amorphous powders or very fine needles. Since its debut in 2013, data collection and analysis schemes have been fine-tuned, and there are currently close to 100 structures determined by MicroED. Although originally developed to study proteins, MicroED is also very powerful for smaller systems, with some recent and very promising examples from the field of natural products.
View Article and Find Full Text PDFIt has been hypothesised that drugs in the chemical space "beyond the rule of 5" (bRo5) must behave as molecular chameleons to combine otherwise conflicting properties, including aqueous solubility, cell permeability and target binding. Evidence for this has, however, been limited to the cyclic peptide cyclosporine A. Herein, we show that the non-peptidic and macrocyclic drugs roxithromycin, telithromycin and spiramycin behave as molecular chameleons, with rifampicin showing a less pronounced behaviour.
View Article and Find Full Text PDFDynamic chirality influences numerous processes in nature from protein folding to catalysis. Azapeptides are peptidomimetics possessing semicarbazide residues that can interconvert between sp and sp hybridization, resulting in stereodynamic interconversions of pseudo- and --configurations by means of a planar intermediate. Cyclic azapeptides have shown unprecedented binding affinity to the cluster of differentiation 36 receptor (CD36) and ability to mitigate macrophage-driven inflammation by modulation of the toll-like receptor 2/6 pathway.
View Article and Find Full Text PDFNatural products that target lipid II, such as the lantibiotic nisin, are strategically important in the development of new antibacterial agents to combat the rise of antimicrobial resistance. Understanding the structural factors that govern the highly selective molecular recognition of lipid II by the N-terminal region of nisin, nisin(1-12), is a crucial step in exploiting the potential of such compounds. In order to elucidate the relationships between amino acid sequence and conformation of this bicyclic peptide fragment, we have used solid-phase peptide synthesis to prepare two novel analogues of nisin(1-12) in which the dehydro residues have been replaced.
View Article and Find Full Text PDFConformational flexibility is a major determinant of the properties of macrocycles and other drugs in beyond rule of 5 (bRo5) space. Prediction of conformations is essential for design of drugs in this space, and we have evaluated three tools for conformational sampling of a set of 10 bRo5 drugs and clinical candidates in polar and apolar environments. The distance-geometry based OMEGA was found to yield ensembles spanning larger structure and property spaces than the ensembles obtained by MOE-LowModeMD (MOE) and MacroModel (MC).
View Article and Find Full Text PDFHalogen bonding is a weak chemical force that has so far mostly found applications in crystal engineering. Despite its potential for use in drug discovery, as a new molecular tool in the direction of molecular recognition events, it has rarely been assessed in biopolymers. Motivated by this fact, we have developed a peptide model system that permits the quantitative evaluation of weak forces in a biologically relevant proteinlike environment and have applied it for the assessment of a halogen bond formed between two amino acid side chains.
View Article and Find Full Text PDFWe have evaluated the ability of nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopies to describe the difference in the folding propensities of two structurally highly similar cyclic β-hairpins, comparing the outcome to that of molecular dynamics simulations. NAMFIS-type NMR ensemble analysis and CD spectroscopy were observed to accurately describe the consequence of altering a single interaction site, whereas a single-site C NMR chemical shift melting curve-based technique was not.
View Article and Find Full Text PDFProtein-protein interactions that have large, flat and featureless binding sites are difficult drug targets. In the development of their modulators conventional drug discovery strategies are often unsuccessful. Gaining a detailed understanding of the binding mode of protein-protein interaction inhibitors is therefore of vast importance for their future pharmaceutical use.
View Article and Find Full Text PDFPeptides are frequently used model systems for protein folding. They are also gaining increased importance as therapeutics. Here, the ability of molecular dynamics (MD) simulation for describing the structure and dynamics of β-hairpin peptides was investigated, with special attention given to the impact of a single interstrand sidechain to sidechain interaction.
View Article and Find Full Text PDF