Miniaturization of optical devices is a modern trend essential for optoelectronics, optical sensing, optical computing and other branches of science and technology. To satisfy this trend, optical materials with a small footprint are required. Here we show that extremely thin, flat, nanostructured gold films made of highly oriented single-crystalline gold quantum-dots can provide elements of topological photonics in visible light and be used as high-index dielectric materials in the infrared part of the spectra.
View Article and Find Full Text PDFTopological darkness is a new phenomenon that guarantees zero reflection/transmission of light from an optical sample and hence provides topologically nontrivial phase singularities. Here we consider topological darkness in an optical heterostructure that consists of an (unknown) layer placed on a composite substrate and suggest an algorithm that can be used to predict and confirm the presence of topological darkness. The algorithm is based on a combination of optical measurements and the Fresnel equations.
View Article and Find Full Text PDF