The interaction between the class I major histocompatibility complex (MHC), the peptide presented by the MHC and the T-cell receptor (TCR) is a key determinant of the cellular immune response. Here, we present TCRpMHCmodels, a method for accurate structural modelling of the TCR-peptide-MHC (TCR-pMHC) complex. This TCR-pMHC modelling pipeline takes as input the amino acid sequence and generates models of the TCR-pMHC complex, with a median Cα RMSD of 2.
View Article and Find Full Text PDFPeptides that bind to and are presented by MHC class I and class II molecules collectively make up the immunopeptidome. In the context of vaccine development, an understanding of the immunopeptidome is essential, and much effort has been dedicated to its accurate and cost-effective identification. Current state-of-the-art methods mainly comprise in silico tools for predicting MHC binding, which is strongly correlated with peptide immunogenicity.
View Article and Find Full Text PDFSpiders and scorpions are notorious for their fearful dispositions and their ability to inject venom into prey and predators, causing symptoms such as necrosis, paralysis, and excruciating pain. Information on venom composition and the toxins present in these species is growing due to an interest in using bioactive toxins from spiders and scorpions for drug discovery purposes and for solving crystal structures of membrane-embedded receptors. Additionally, the identification and isolation of a myriad of spider and scorpion toxins has allowed research within next generation antivenoms to progress at an increasingly faster pace.
View Article and Find Full Text PDF